Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lucy R. Hutyra is active.

Publication


Featured researches published by Lucy R. Hutyra.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools

Karen C. Seto; Burak Güneralp; Lucy R. Hutyra

Urban land-cover change threatens biodiversity and affects ecosystem productivity through loss of habitat, biomass, and carbon storage. However, despite projections that world urban populations will increase to nearly 5 billion by 2030, little is known about future locations, magnitudes, and rates of urban expansion. Here we develop spatially explicit probabilistic forecasts of global urban land-cover change and explore the direct impacts on biodiversity hotspots and tropical carbon biomass. If current trends in population density continue and all areas with high probabilities of urban expansion undergo change, then by 2030, urban land cover will increase by 1.2 million km2, nearly tripling the global urban land area circa 2000. This increase would result in considerable loss of habitats in key biodiversity hotspots, with the highest rates of forecasted urban growth to take place in regions that were relatively undisturbed by urban development in 2000: the Eastern Afromontane, the Guinean Forests of West Africa, and the Western Ghats and Sri Lanka hotspots. Within the pan-tropics, loss in vegetation biomass from areas with high probability of urban expansion is estimated to be 1.38 PgC (0.05 PgC yr−1), equal to ∼5% of emissions from tropical deforestation and land-use change. Although urbanization is often considered a local issue, the aggregate global impacts of projected urban expansion will require significant policy changes to affect future growth trajectories to minimize global biodiversity and vegetation carbon losses.


Geophysical Research Letters | 2006

Amazon rainforests green‐up with sunlight in dry season

Alfredo R. Huete; Kamel Didan; Yosio Edemir Shimabukuro; Piyachat Ratana; Scott R. Saleska; Lucy R. Hutyra; Wenze Yang; Ramakrishna R. Nemani; Ranga B. Myneni

Received 23 December 2005; revised 6 February 2006; accepted 8 February 2006; published 22 March 2006. [1] Metabolism and phenology of Amazon rainforests significantly influence global dynamics of climate, carbon and water, but remain poorly understood. We analyzed Amazon vegetation phenology at multiple scales with Moderate Resolution Imaging Spectroradiometer (MODIS) satellite measurements from 2000 to 2005. MODIS Enhanced Vegetation Index (EVI, an index of canopy photosynthetic capacity) increased by 25% with sunlight during the dry season across Amazon forests, opposite to ecosystem model predictions that water limitation should cause dry season declines in forest canopy photosynthesis. In contrast to intact forests, areas converted to pasture showed dry-season declines in EVI-derived photosynthetic capacity, presumably because removal of deep-rooted forest trees reduced access to deep soil water. Local canopy photosynthesis measured from eddy flux towers in both a rainforest and forest conversion site confirm our interpretation of satellite data, and suggest that basin-wide carbon fluxes can be constrained by integrating remote sensing and local flux measurements. Citation: Huete, A. R., K. Didan, Y. E. Shimabukuro, P. Ratana, S. R. Saleska, L. R. Hutyra, W. Yang, R. R. Nemani, and R. Myneni (2006), Amazon rainforests green-up with sunlight in dry season, Geophys. Res. Lett., 33, L06405, doi:10.1029/2005GL025583.


Ecological Applications | 2004

CARBON BALANCE AND VEGETATION DYNAMICS IN AN OLD-GROWTH AMAZONIAN FOREST

Amy H. Rice; Elizabeth Hammond Pyle; Scott R. Saleska; Lucy R. Hutyra; Michael Palace; Michael Keller; Plínio Barbosa de Camargo; Kleber Portilho; Dulcyana F. Marques; Steven C. Wofsy

Amazon forests could be globally significant sinks or sources for atmospheric carbon dioxide, but carbon balance of these forests remains poorly quantified. We surveyed 19.75 ha along four 1-km transects of well-drained old-growth upland forest in the Tapajos National Forest near Santarem, Para ´, Brazil (2 8519 S, 548589 W) in order to assess carbon pool sizes, fluxes, and climatic controls on carbon balance. In 1999 there were, on average, 470 live trees per hectare with diameter at breast height (dbh)


Proceedings of the National Academy of Sciences of the United States of America | 2015

Methane emissions from natural gas infrastructure and use in the urban region of Boston, Massachusetts

Kathryn McKain; Adrian Down; Steve M. Raciti; J. W. Budney; Lucy R. Hutyra; Cody Floerchinger; Scott C. Herndon; Thomas Nehrkorn; Mark S. Zahniser; Robert B. Jackson; Nathan Phillips; Steven C. Wofsy

10 cm. The mean (and 95% CI) aboveground live biomass was 143.7 6 5.4 Mg C/ha, with an additional 48.0 6 5.2 Mg C/ha of coarse woody debris (CWD). The increase of live wood biomass after two years was 1.40 6 0.62 Mg C·ha 21 ·yr 21 , the net result of growth (3.18 6 0.20 Mg C·ha 21 ·yr 21 from mean bole increment of 0.36 cm/yr), recruitment of new trees (0.63 6 0.09 Mg C·ha 21 ·yr 21 , reflecting a notably high stem recruitment rate of 4.8 6 0.9%), and mortality (22.41 6 0.53 Mg C·ha 21 ·yr 21 from stem death of 1.7% yr 21 ). The gain in live wood biomass was exceeded by respiration losses from CWD, resulting in an overall estimated net loss from total aboveground biomass of 1.9 6 1.0 Mg C·ha 21 ·yr 21 . The presence of large CWD pools, high recruitment rate, and net accumulation of small-tree biomass, suggest that a period of high mortality preceded the initiation of this study, possibly triggered by the strong El Nino Southern Oscillation events of the 1990s. Transfer of carbon between live and dead biomass pools appears to have led to substantial increases in the pool of CWD, causing the observed net carbon release. The data show that biometric studies of tropical forests neglecting CWD are unlikely to accurately determine carbon balance. Fur- thermore, the hypothesized sequestration flux from CO 2 fertilization (,0.5 Mg C·ha 21 ·yr 21 ) would be comparatively small and masked for considerable periods by climate-driven shifts in forest structure and associated carbon balance in tropical forests.


Environmental Pollution | 2013

Mapping urban pipeline leaks: methane leaks across Boston.

Nathan Phillips; Robert C. Ackley; Eric R. Crosson; Adrian Down; Lucy R. Hutyra; Max N. Brondfield; Jonathan D. Karr; Kaiguang Zhao; Robert B. Jackson

Significance Most recent analyses of the environmental impact of natural gas have focused on production, with very sparse information on emissions from distribution and end use. This study quantifies the full seasonal cycle of methane emissions and the fractional contribution of natural gas for the urbanized region centered on Boston. Emissions from natural gas are found to be two to three times larger than predicted by existing inventory methodologies and industry reports. Our findings suggest that natural-gas–consuming regions may be larger sources of methane to the atmosphere than is currently estimated and represent areas of significant resource loss. Methane emissions from natural gas delivery and end use must be quantified to evaluate the environmental impacts of natural gas and to develop and assess the efficacy of emission reduction strategies. We report natural gas emission rates for 1 y in the urban region of Boston, using a comprehensive atmospheric measurement and modeling framework. Continuous methane observations from four stations are combined with a high-resolution transport model to quantify the regional average emission flux, 18.5 ± 3.7 (95% confidence interval) g CH4⋅m−2⋅y−1. Simultaneous observations of atmospheric ethane, compared with the ethane-to-methane ratio in the pipeline gas delivered to the region, demonstrate that natural gas accounted for ∼60–100% of methane emissions, depending on season. Using government statistics and geospatial data on natural gas use, we find the average fractional loss rate to the atmosphere from all downstream components of the natural gas system, including transmission, distribution, and end use, was 2.7 ± 0.6% in the Boston urban region, with little seasonal variability. This fraction is notably higher than the 1.1% implied by the most closely comparable emission inventory.


Journal of Geophysical Research | 2008

Dynamics of carbon, biomass, and structure in two Amazonian forests

Elizabeth Hammond Pyle; Gregory W. Santoni; Henrique E. M. Nascimento; Lucy R. Hutyra; Simone A. Vieira; Daniel J. Curran; Joost van Haren; Scott R. Saleska; V. Y. Chow; Plinio B. Carmago; William F. Laurance; Steven C. Wofsy

Natural gas is the largest source of anthropogenic emissions of methane (CH(4)) in the United States. To assess pipeline emissions across a major city, we mapped CH(4) leaks across all 785 road miles in the city of Boston using a cavity-ring-down mobile CH(4) analyzer. We identified 3356 CH(4) leaks with concentrations exceeding up to 15 times the global background level. Separately, we measured δ(13)CH(4) isotopic signatures from a subset of these leaks. The δ(13)CH(4) signatures (mean = -42.8‰ ± 1.3‰ s.e.; n = 32) strongly indicate a fossil fuel source rather than a biogenic source for most of the leaks; natural gas sampled across the city had average δ(13)CH(4) values of -36.8‰ (± 0.7‰ s.e., n = 10), whereas CH(4) collected from landfill sites, wetlands, and sewer systems had δ(13)CH(4) signatures ~20‰ lighter (μ = -57.8‰, ± 1.6‰ s.e., n = 8). Repairing leaky natural gas distribution systems will reduce greenhouse gas emissions, increase consumer health and safety, and save money.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Reduced impact logging minimally alters tropical rainforest carbon and energy exchange

Scott D. Miller; Michael L. Goulden; Lucy R. Hutyra; Michael Keller; Scott R. Saleska; Steven C. Wofsy; A.M.S. Figueira; Humberto R. da Rocha; Plínio Barbosa de Camargo

(1) Amazon forests are potentially globally significant sources or sinks for atmospheric carbon dioxide. In this study, we characterize the spatial trends in carbon storage and fluxes in both live and dead biomass (necromass) in two Amazonian forests, the Biological Dynamic of Forest Fragments Project (BDFFP), near Manaus, Amazonas, and the Tapajos National Forest (TNF) near Santarem, Para´. We assessed coarse woody debris (CWD) stocks, tree growth, mortality, and recruitment in ground-based plots distributed across the terra firme forest at both sites. Carbon dynamics were similar within each site, but differed significantly between the sites. The BDFFP and the TNF held comparable live biomass (167 ± 7.6 MgCha � 1 versus 149 ± 6.0 MgCha � 1 , respectively), but stocks of CWD were 2.5 times larger at TNF (16.2 ± 1.5 MgCha � 1 at BDFFP, versus 40.1 ± 3.9 MgCha � 1 at TNF). A model of current forest dynamics suggests that the BDFFP was close to carbon balance, and its size class structure approximated a steady state. The TNF, by contrast, showed rapid carbon accrual to live biomass (3.24 ± 0.22 MgCha � 1 � a � 1 in TNF, 2.59 ± 0.16 MgCha � 1 � a � 1 in BDFFP), which was more than offset by losses from large stocks of CWD, as well as ongoing shifts of biomass among size classes. This pattern in the TNF suggests recovery from a significant disturbance. The net loss of carbon from the TNF will likely last 10-15 years after the initial disturbance (controlled by the rate of decay of coarse woody debris), followed by uptake of carbon as the forest size class structure and composition continue to shift. The frequency and longevity of forests showing such disequilibruim dynamics within the larger matrix of the Amazon remains an essential question to understanding Amazonian carbon balance.


Earth’s Future | 2014

Urbanization and the carbon cycle: Current capabilities and research outlook from the natural sciences perspective

Lucy R. Hutyra; Riley M. Duren; Kevin Robert Gurney; Nancy B. Grimm; Eric A. Kort; Elisabeth Larson; Gyami Shrestha

We used eddy covariance and ecological measurements to investigate the effects of reduced impact logging (RIL) on an old-growth Amazonian forest. Logging caused small decreases in gross primary production, leaf production, and latent heat flux, which were roughly proportional to canopy loss, and increases in heterotrophic respiration, tree mortality, and wood production. The net effect of RIL was transient, and treatment effects were barely discernable after only 1 y. RIL appears to provide a strategy for managing tropical forest that minimizes the potential risks to climate associated with large changes in carbon and water exchange.


Science of The Total Environment | 2014

Mapping carbon storage in urban trees with multi-source remote sensing data: relationships between biomass, land use, and demographics in Boston neighborhoods.

Steve M. Raciti; Lucy R. Hutyra; Jared D. Newell

This paper explores the urban carbon cycle from the natural sciences perspective, identifying key knowledge gaps and priority areas for future research. The combination of large, concentrated carbon fluxes and rapid change makes cities key elements of the carbon cycle and offers the potential for them to serve as “first responders” for climate action. Estimates of urban-scale carbon fluxes are significantly more uncertain than at larger spatial scales, in part because past studies have mostly avoided local/urban scales where the mix of anthropogenic and natural fluxes is complex and difficult to observationally isolate. To develop effective emission reduction policies, we need to understand emission sources and how they may be changing. Such improved quantification and understanding of underlying processes at the urban scale will not only provide policy-relevant information and improve the understanding of urban dynamics and future scenarios, but will also translate into better global-scale anthropogenic flux estimates, and advance our understanding of carbon cycle and climate feedbacks across multiple scales. Understanding the relationship between urbanization and urban carbon flows requires intellectual integration with research communities beyond the natural sciences. Cities can serve as interdisciplinary process laboratories that are sufficiently constrained in both spatial and governance scale to support truly integrated research by the natural sciences, social sciences, and engineering. A thoughtfully crafted science research agenda that is grounded in sustained, dense observations relevant to estimating urban carbon fluxes and their controlling processes and is focused on a statistically significant sample of cities will advance our understanding of the carbon cycle.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Cities, traffic, and CO2: A multidecadal assessment of trends, drivers, and scaling relationships

Conor K. Gately; Lucy R. Hutyra; Ian Sue Wing

High resolution maps of urban vegetation and biomass are powerful tools for policy-makers and community groups seeking to reduce rates of urban runoff, moderate urban heat island effects, and mitigate the effects of greenhouse gas emissions. We developed a very high resolution map of urban tree biomass, assessed the scale sensitivities in biomass estimation, compared our results with lower resolution estimates, and explored the demographic relationships in biomass distribution across the City of Boston. We integrated remote sensing data (including LiDAR-based tree height estimates) and field-based observations to map canopy cover and aboveground tree carbon storage at ~1m spatial scale. Mean tree canopy cover was estimated to be 25.5±1.5% and carbon storage was 355Gg (28.8MgCha(-1)) for the City of Boston. Tree biomass was highest in forest patches (110.7MgCha(-1)), but residential (32.8MgCha(-1)) and developed open (23.5MgCha(-1)) land uses also contained relatively high carbon stocks. In contrast with previous studies, we did not find significant correlations between tree biomass and the demographic characteristics of Boston neighborhoods, including income, education, race, or population density. The proportion of households that rent was negatively correlated with urban tree biomass (R(2)=0.26, p=0.04) and correlated with Priority Planting Index values (R(2)=0.55, p=0.001), potentially reflecting differences in land management among rented and owner-occupied residential properties. We compared our very high resolution biomass map to lower resolution biomass products from other sources and found that those products consistently underestimated biomass within urban areas. This underestimation became more severe as spatial resolution decreased. This research demonstrates that 1) urban areas contain considerable tree carbon stocks; 2) canopy cover and biomass may not be related to the demographic characteristics of Boston neighborhoods; and 3) that recent advances in high resolution remote sensing have the potential to improve the characterization and management of urban vegetation.

Collaboration


Dive into the Lucy R. Hutyra's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Allison L. Dunn

Worcester State University

View shared research outputs
Top Co-Authors

Avatar

Nancy B. Grimm

Arizona State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge