Lucy R. Yates
Wellcome Trust Sanger Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lucy R. Yates.
Nature | 2013
Ludmil B. Alexandrov; Serena Nik-Zainal; David C. Wedge; Samuel Aparicio; Sam Behjati; Andrew V. Biankin; Graham R. Bignell; Niccolo Bolli; Åke Borg; Anne Lise Børresen-Dale; Sandrine Boyault; Birgit Burkhardt; Adam Butler; Carlos Caldas; Helen Davies; Christine Desmedt; Roland Eils; Jórunn Erla Eyfjörd; John A. Foekens; Mel Greaves; Fumie Hosoda; Barbara Hutter; Tomislav Ilicic; Sandrine Imbeaud; Marcin Imielinsk; Natalie Jäger; David T. W. Jones; David Jones; Stian Knappskog; Marcel Kool
All cancers are caused by somatic mutations; however, understanding of the biological processes generating these mutations is limited. The catalogue of somatic mutations from a cancer genome bears the signatures of the mutational processes that have been operative. Here we analysed 4,938,362 mutations from 7,042 cancers and extracted more than 20 distinct mutational signatures. Some are present in many cancer types, notably a signature attributed to the APOBEC family of cytidine deaminases, whereas others are confined to a single cancer class. Certain signatures are associated with age of the patient at cancer diagnosis, known mutagenic exposures or defects in DNA maintenance, but many are of cryptic origin. In addition to these genome-wide mutational signatures, hypermutation localized to small genomic regions, ‘kataegis’, is found in many cancer types. The results reveal the diversity of mutational processes underlying the development of cancer, with potential implications for understanding of cancer aetiology, prevention and therapy.
Nature Reviews Genetics | 2012
Lucy R. Yates; Peter J. Campbell
The advent of massively parallel sequencing technologies has allowed the characterization of cancer genomes at an unprecedented resolution. Investigation of the mutational landscape of tumours is providing new insights into cancer genome evolution, laying bare the interplay of somatic mutation, adaptation of clones to their environment and natural selection. These studies have demonstrated the extent of the heterogeneity of cancer genomes, have allowed inferences to be made about the forces that act on nascent cancer clones as they evolve and have shown insight into the mutational processes that generate genetic variation. Here we review our emerging understanding of the dynamic evolution of the cancer genome and of the implications for basic cancer biology and the development of antitumour therapy.
Nature | 2012
Philip Stephens; Patrick Tarpey; Helen Davies; Peter Van Loo; Christopher Greenman; David C. Wedge; Serena Nik-Zainal; Sancha Martin; Ignacio Varela; Graham R. Bignell; Lucy R. Yates; Elli Papaemmanuil; David Beare; Adam Butler; Angela Cheverton; John Gamble; Jonathan Hinton; Mingming Jia; Alagu Jayakumar; David Jones; Calli Latimer; King Wai Lau; Stuart McLaren; David J. McBride; Andrew Menzies; Laura Mudie; Keiran Raine; Roland Rad; Michael Spencer Chapman; Jon W. Teague
All cancers carry somatic mutations in their genomes. A subset, known as driver mutations, confer clonal selective advantage on cancer cells and are causally implicated in oncogenesis, and the remainder are passenger mutations. The driver mutations and mutational processes operative in breast cancer have not yet been comprehensively explored. Here we examine the genomes of 100 tumours for somatic copy number changes and mutations in the coding exons of protein-coding genes. The number of somatic mutations varied markedly between individual tumours. We found strong correlations between mutation number, age at which cancer was diagnosed and cancer histological grade, and observed multiple mutational signatures, including one present in about ten per cent of tumours characterized by numerous mutations of cytosine at TpC dinucleotides. Driver mutations were identified in several new cancer genes including AKT2, ARID1B, CASP8, CDKN1B, MAP3K1, MAP3K13, NCOR1, SMARCD1 and TBX3. Among the 100 tumours, we found driver mutations in at least 40 cancer genes and 73 different combinations of mutated cancer genes. The results highlight the substantial genetic diversity underlying this common disease.
Science | 2014
Elza C de Bruin; Nicholas McGranahan; Richard Mitter; Max Salm; David C. Wedge; Lucy R. Yates; Mariam Jamal-Hanjani; Seema Shafi; Nirupa Murugaesu; Andrew Rowan; Eva Grönroos; Madiha A. Muhammad; Stuart Horswell; Marco Gerlinger; Ignacio Varela; David Jones; John Marshall; Thierry Voet; Peter Van Loo; Doris Rassl; Robert C. Rintoul; Sam M. Janes; Siow Ming Lee; Martin Forster; Tanya Ahmad; David Lawrence; Mary Falzon; Arrigo Capitanio; Timothy T. Harkins; Clarence C. Lee
Spatial and temporal dissection of the genomic changes occurring during the evolution of human non–small cell lung cancer (NSCLC) may help elucidate the basis for its dismal prognosis. We sequenced 25 spatially distinct regions from seven operable NSCLCs and found evidence of branched evolution, with driver mutations arising before and after subclonal diversification. There was pronounced intratumor heterogeneity in copy number alterations, translocations, and mutations associated with APOBEC cytidine deaminase activity. Despite maintained carcinogen exposure, tumors from smokers showed a relative decrease in smoking-related mutations over time, accompanied by an increase in APOBEC-associated mutations. In tumors from former smokers, genome-doubling occurred within a smoking-signature context before subclonal diversification, which suggested that a long period of tumor latency had preceded clinical detection. The regionally separated driver mutations, coupled with the relentless and heterogeneous nature of the genome instability processes, are likely to confound treatment success in NSCLC. Different regions of a human lung tumor harbor different mutations, possibly explaining why the disease is so tough to treat. [Also see Perspective by Govindan] Space, time, and the lung cancer genome Lung cancer poses a formidable challenge to clinical oncologists. It is often detected at a late stage, and most therapies work for only a short time before the tumors resume their relentless growth. Two independent analyses of the human lung cancer genome may help explain why this disease is so resilient (see the Perspective by Govindan). Rather than take a single “snapshot” of the cancer genome, de Bruin et al. and Zhang et al. identified genomic alterations in spatially distinct regions of single lung tumors and used this information to infer the tumors evolutionary history. Each tumor showed tremendous spatial and temporal diversity in its mutational profiles. Thus, the efficacy of drugs may be short-lived because they destroy only a portion of the tumor. Science, this issue p. 251, p. 256; see also p. 169
Nature | 2016
Serena Nik-Zainal; Helen Davies; Johan Staaf; Manasa Ramakrishna; Dominik Glodzik; Xueqing Zou; Inigo Martincorena; Ludmil B. Alexandrov; Sancha Martin; David C. Wedge; Peter Van Loo; Young Seok Ju; Michiel M. Smid; Arie B. Brinkman; Sandro Morganella; Miriam Ragle Aure; Ole Christian Lingjærde; Anita Langerød; Markus Ringnér; Sung-Min Ahn; Sandrine Boyault; Jane E. Brock; Annegien Broeks; Adam Butler; Christine Desmedt; Luc Dirix; Serge Dronov; Aquila Fatima; John A. Foekens; Moritz Gerstung
We analysed whole genome sequences of 560 breast cancers to advance understanding of the driver mutations conferring clonal advantage and the mutational processes generating somatic mutations. 93 protein-coding cancer genes carried likely driver mutations. Some non-coding regions exhibited high mutation frequencies but most have distinctive structural features probably causing elevated mutation rates and do not harbour driver mutations. Mutational signature analysis was extended to genome rearrangements and revealed 12 base substitution and six rearrangement signatures. Three rearrangement signatures, characterised by tandem duplications or deletions, appear associated with defective homologous recombination based DNA repair: one with deficient BRCA1 function; another with deficient BRCA1 or BRCA2 function; the cause of the third is unknown. This analysis of all classes of somatic mutation across exons, introns and intergenic regions highlights the repertoire of cancer genes and mutational processes operative, and progresses towards a comprehensive account of the somatic genetic basis of breast cancer.
Science | 2014
Jose M. C. Tubio; Yilong Li; Young Seok Ju; Inigo Martincorena; Susanna L. Cooke; Marta Tojo; Gunes Gundem; Christodoulos P Pipinikas; Jorge Zamora; Keiran Raine; Andy Menzies; P. Roman-Garcia; Anthony Fullam; Moritz Gerstung; Adam Shlien; Patrick Tarpey; Elli Papaemmanuil; Stian Knappskog; P. Van Loo; Manasa Ramakrishna; Helen Davies; John Marshall; David C. Wedge; J Teague; Adam Butler; Serena Nik-Zainal; Ludmil B. Alexandrov; Sam Behjati; Lucy R. Yates; Niccolo Bolli
Introduction The human genome is peppered with mobile repetitive elements called long interspersed nuclear element–1 (L1) retrotransposons. Propagating through RNA and cDNA intermediates, these molecular parasites copy and insert themselves throughout the genome, with potentially disruptive effects on neighboring genes or regulatory sequences. In the germ line, unique sequence downstream of L1 elements can also be retrotransposed if transcription continues beyond the repeat, a process known as 3′ transduction. There has been growing interest in retrotransposition and 3′ transduction as a possible source of somatic mutations during tumorigenesis. The activity of individual L1 elements fluctuates during tumor evolution. In a lung tumor, hundreds of 3′ transductions arose from a small number of active L1 source elements (colored circles on outer rim of circle). As the tumor evolved from the preinvasive common ancestor to invasive cancer, individual elements exhibited variable activity over time. Rationale To explore whether 3′ transductions are frequent in cancer, we developed a bioinformatic algorithm for identifying somatically acquired retrotranspositions in cancer genomes. We applied our algorithm to 290 cancer samples from 244 patients across 12 tumor types. The unique downstream sequence mobilized with 3′ transductions effectively fingerprints the L1 source element, providing insights into the activity of individual L1 loci across the genome. Results Across the 290 samples, we identified 2756 somatic L1 retrotranspositions. Tumors from 53% of patients had at least one such event, with colorectal and lung cancers being most frequently affected (93% and 75% of patients, respectively). Somatic 3′ transductions comprised 24% of events, half of which represented mobilizations of unique sequence alone, without any accompanying L1 sequence. Overall, 95% of 3′ transductions identified derived from only 72 germline L1 source elements, with as few as four loci accounting for 50% of events. In a given sample, the same source element could generate 50 or more somatic transductions, scattered extensively across the genome. About 5% of somatic transductions arose from L1 source elements that were themselves somatic retrotranspositions. In three of the cases in which we sequenced more than one sample from a patient’s tumor, we were able to place 3′ transductions on the phylogenetic tree. We found that the activity of individual source elements fluctuated during tumor evolution, with different subclones exhibiting much variability in which elements were “on” and which were “off.” The ability to identify the individual L1 source elements active in a given tumor enabled us to study the promoter methylation of those elements specifically. We found that 3′ transduction activity in a patient’s tumor was always associated with hypomethylation of that element. Overall, 2.3% of transductions distributed exons or entire genes to other sites in the genome, and many more mobilized deoxyribonuclease I (DNAse-I) hypersensitive sites or transcription factor binding sites identified by the ENCODE project. Occasionally, somatic L1 insertions inserted near coding sequence and redistributed these exons elsewhere in the genome. However, we found no general effects of retrotranspositions on transcription levels of genes at the insertion points and no evidence for aberrant RNA species resulting from somatically acquired transposable elements. Indeed, as with germline retrotranspositions, somatic insertions exhibited a strong enrichment in heterochromatic, gene-poor regions of the genome. Conclusion Somatic 3′ transduction occurs frequently in human tumors, and in some cases transduction events can scatter exons, genes, and regulatory elements widely across the genome. Dissemination of these sequences appears to be due to a small number of highly active L1 elements, whose activity can wax and wane during tumor evolution. The majority of the retrotransposition events are likely to be harmless “passenger” mutations. Hitchhiking through the tumor genome Retrotransposons are DNA repeat sequences that are constantly on the move. By poaching certain cellular enzymes, they copy and insert themselves at new sites in the genome. Sometimes they carry along adjacent DNA sequences, a process called 3′ transduction. Tubio et al. found that 3′ transduction is a common event in human tumors. Because this process can scatter genes and regulatory sequences across the genome, it may represent yet another mechanism by which tumor cells acquire new mutations that help them survive and grow. Science, this issue p. 10.1126/science.1251343 Tumor genomes are peppered with mobile repeat sequences that carry along adjacent DNA when they insert into new genomic sites. Long interspersed nuclear element–1 (L1) retrotransposons are mobile repetitive elements that are abundant in the human genome. L1 elements propagate through RNA intermediates. In the germ line, neighboring, nonrepetitive sequences are occasionally mobilized by the L1 machinery, a process called 3′ transduction. Because 3′ transductions are potentially mutagenic, we explored the extent to which they occur somatically during tumorigenesis. Studying cancer genomes from 244 patients, we found that tumors from 53% of the patients had somatic retrotranspositions, of which 24% were 3′ transductions. Fingerprinting of donor L1s revealed that a handful of source L1 elements in a tumor can spawn from tens to hundreds of 3′ transductions, which can themselves seed further retrotranspositions. The activity of individual L1 elements fluctuated during tumor evolution and correlated with L1 promoter hypomethylation. The 3′ transductions disseminated genes, exons, and regulatory elements to new locations, most often to heterochromatic regions of the genome.
Cancer Cell | 2017
Lucy R. Yates; Stian Knappskog; David C. Wedge; James H.R. Farmery; Santiago Gonzalez; Inigo Martincorena; Ludmil B. Alexandrov; Peter Van Loo; Hans Kristian Haugland; Peer Kaare Lilleng; Gunes Gundem; Moritz Gerstung; Elli Pappaemmanuil; Patrycja Gazinska; Shriram G. Bhosle; David Jones; Keiran Raine; Laura Mudie; Calli Latimer; Elinor Sawyer; Christine Desmedt; Christos Sotiriou; Michael R. Stratton; Anieta M. Sieuwerts; Andy G. Lynch; John W. M. Martens; Andrea L. Richardson; Andrew Tutt; Per Eystein Lønning; Peter J. Campbell
Summary Patterns of genomic evolution between primary and metastatic breast cancer have not been studied in large numbers, despite patients with metastatic breast cancer having dismal survival. We sequenced whole genomes or a panel of 365 genes on 299 samples from 170 patients with locally relapsed or metastatic breast cancer. Several lines of analysis indicate that clones seeding metastasis or relapse disseminate late from primary tumors, but continue to acquire mutations, mostly accessing the same mutational processes active in the primary tumor. Most distant metastases acquired driver mutations not seen in the primary tumor, drawing from a wider repertoire of cancer genes than early drivers. These include a number of clinically actionable alterations and mutations inactivating SWI-SNF and JAK2-STAT3 pathways.
Nature Communications | 2014
Susanna L. Cooke; Adam Shlien; John Marshall; Christodoulos P Pipinikas; Inigo Martincorena; Jose M. C. Tubio; Yilong Li; Andrew Menzies; Laura Mudie; Manasa Ramakrishna; Lucy R. Yates; Helen Davies; Niccolo Bolli; Graham R. Bignell; Patrick Tarpey; Sam Behjati; Serena Nik-Zainal; Elli Papaemmanuil; Vitor Hugo Teixeira; Keiran Raine; Sarah Oameara; Maryam S. Dodoran; Jon Teague; Adam Butler; Christine A. Iacobuzio-Donahue; Thomas Santarius; Richard Grundy; David Malkin; Mel Greaves; Nikhil C. Munshi
Cancer evolves by mutation, with somatic reactivation of retrotransposons being one such mutational process. Germline retrotransposition can cause processed pseudogenes, but whether this occurs somatically has not been evaluated. Here we screen sequencing data from 660 cancer samples for somatically acquired pseudogenes. We find 42 events in 17 samples, especially non-small cell lung cancer (5/27) and colorectal cancer (2/11). Genomic features mirror those of germline LINE element retrotranspositions, with frequent target-site duplications (67%), consensus TTTTAA sites at insertion points, inverted rearrangements (21%), 5′ truncation (74%) and polyA tails (88%). Transcriptional consequences include expression of pseudogenes from UTRs or introns of target genes. In addition, a somatic pseudogene that integrated into the promoter and first exon of the tumour suppressor gene, MGA, abrogated expression from that allele. Thus, formation of processed pseudogenes represents a new class of mutation occurring during cancer development, with potentially diverse functional consequences depending on genomic context.
Genome Research | 2015
Young Seok Ju; Jose M. C. Tubio; William Mifsud; Beiyuan Fu; Helen Davies; Manasa Ramakrishna; Yilong Li; Lucy R. Yates; Gunes Gundem; Patrick Tarpey; Sam Behjati; Elli Papaemmanuil; Sancha Martin; Anthony Fullam; Moritz Gerstung; Jyoti Nangalia; Anthony R. Green; Carlos Caldas; Åke Borg; Andrew Tutt; Ming Ta Michael Lee; Laura J. van't Veer; Benita K T Tan; Samuel Aparicio; Paul N. Span; John W.M. Martens; Stian Knappskog; Anne Vincent-Salomon; Anne Lise Børresen-Dale; Jórunn Erla Eyfjörd
Mitochondrial genomes are separated from the nuclear genome for most of the cell cycle by the nuclear double membrane, intervening cytoplasm, and the mitochondrial double membrane. Despite these physical barriers, we show that somatically acquired mitochondrial-nuclear genome fusion sequences are present in cancer cells. Most occur in conjunction with intranuclear genomic rearrangements, and the features of the fusion fragments indicate that nonhomologous end joining and/or replication-dependent DNA double-strand break repair are the dominant mechanisms involved. Remarkably, mitochondrial-nuclear genome fusions occur at a similar rate per base pair of DNA as interchromosomal nuclear rearrangements, indicating the presence of a high frequency of contact between mitochondrial and nuclear DNA in some somatic cells. Transmission of mitochondrial DNA to the nuclear genome occurs in neoplastically transformed cells, but we do not exclude the possibility that some mitochondrial-nuclear DNA fusions observed in cancer occurred years earlier in normal somatic cells.
Clinical Cancer Research | 2017
Lucy R. Yates; Christine Desmedt
The genomic revolution has fundamentally changed our perception of breast cancer. It is now apparent from DNA-based massively parallel sequencing data that at the genomic level, every breast cancer is unique and shaped by the mutational processes to which it was exposed during its lifetime. More than 90 breast cancer driver genes have been identified as recurrently mutated, and many occur at low frequency across the breast cancer population. Certain cancer genes are associated with traditionally defined histologic subtypes, but genomic intertumoral heterogeneity exists even between cancers that appear the same under the microscope. Most breast cancers contain subclonal populations, many of which harbor driver alterations, and subclonal structure is typically remodeled over time, across metastasis and as a consequence of treatment interventions. Genomics is deepening our understanding of breast cancer biology, contributing to an accelerated phase of targeted drug development and providing insights into resistance mechanisms. Genomics is also providing tools necessary to deliver personalized cancer medicine, but a number of challenges must still be addressed. Clin Cancer Res; 23(11); 2630–9. ©2017 AACR. See all articles in this CCR Focus section, “Breast Cancer Research: From Base Pairs to Populations.”