Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luděk Bláha is active.

Publication


Featured researches published by Luděk Bláha.


Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2001

Aryl hydrocarbon receptor-mediated activity of mutagenic polycyclic aromatic hydrocarbons determined using in vitro reporter gene assay.

Miroslav Machala; Jan Vondráček; Luděk Bláha; Miroslav Ciganek; Jiří Neča

Activation of aryl hydrocarbon receptor (AhR) by 30 polycyclic aromatic hydrocarbons (PAHs) was determined in the chemical-activated luciferase expression (CALUX) assay, using two exposure times (6 and 24h), in order to reflect the metabolization of PAHs. AhR-inducing potencies of PAHs were expressed as induction equivalency factors (IEFs) relative to benzo[a]pyrene and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In 24h exposure assay, the highest IEFs were found for benzo[k]fluoranthene, dibenzo[a,h]anthracene and dibenzo[a,k]fluoranthene (approximately three orders of magnitude lower than TCDD) followed by dibenzo[a,j]anthracene, benzo[j]fluoranthene, indeno[1,2,3-cd]pyrene, and naphtho[2,3-a]pyrene. The 6h exposure to PAHs led to a significantly higher AhR-mediated activity than the 24h exposure (generally by two orders of magnitude), probably due to the high rate of PAH metabolism. The strongest AhR inducers showed IEFs approaching that of TCDD. Several PAHs, including some strong mutagens, such as dibenzo[a,l]pyrene, cyclopenta[cd]pyrene, and benzo[a]perylene, elicited only partial agonist activity. Calculation of IEFs based on EC25 values and/or 6h exposure data is suggested as an alternative approach to estimation of toxic potencies of PAHs with high metabolic rates and/or the weak AhR agonists. The IEFs, together with the recently reported relative mutagenic potencies of PAHs [Mutat. Res. 371 (1996) 123; Mutat. Res. 446 (1999) 1] were combined with data on concentrations of PAHs in extracts of model environmental samples (river sediments) to calculate AhR-mediated induction equivalents and mutagenic equivalents. The highest AhR-mediated induction equivalents were found for benzo[k]fluoranthene and benzo[j]fluoranthene, followed by indeno[1,2,3-cd]pyrene, dibenzo[a,h]anthracene, benzo[a]pyrene, dibenzo[a,j]anthracene, chrysene, and benzo[b]fluoranthene. High mutagenic equivalents in the river sediments were found for benzo[a]pyrene, dibenzo[a,e]pyrene, and naphtho[2,3-a]pyrene and to a lesser extent also for benzo[a]anthracene, benzo[b]fluoranthene, indeno[1,2,3-cd]pyrene, benzo[j]fluoranthene, dibenzo[a,e]fluoranthene and dibenzo[a,i]pyrene. These data illustrate that AhR-mediated activity of PAHs, including the highly mutagenic compounds, occurring in the environment but not routinely monitored, could significantly contribute to their adverse effects.


Journal of Phycology | 2006

EXPLORING THE NATURAL ROLE OF MICROCYSTINS—A REVIEW OF EFFECTS ON PHOTOAUTOTROPHIC ORGANISMS1

Pavel Babica; Luděk Bláha; Blahoslav Maršálek

Cyanobacterial blooms and the production of cyanotoxins represent a serious global problem. Although the effects of a group of important cyanotoxins, microcystins (MCs), have been studied intensively in various organisms, little is known about the natural functions of these cyclic heptapeptides. MCs may have allelopathic effects. This paper summarizes the information from the studies that have investigated the effects of MCs on photoautotrophs in vitro and in vivo. Interactions with terrestrial plants, macrophytes, macroalgae, and planktonic microalgae are reported in detail with respect to the ecological relevancy of experimental conditions related to allelopathy. Our review shows that only a limited number of studies described harmful effects of MCs at concentrations that are typical for the environment. Consequently, the ability of MCs to act as general allelopathic compounds against photoautotrophs seems unlikely. However, further research is needed for definitive confirmation or rejection of the allelopathic hypothesis as well as, an explanation of the crucial question of MC function in the context of new information from evolutionary and molecular biology.


Interdisciplinary Toxicology | 2009

Toxins produced in cyanobacterial water blooms - toxicity and risks

Luděk Bláha; Pavel Babica; Blahoslav Maršálek

Toxins produced in cyanobacterial water blooms - toxicity and risks Cyanobacterial blooms in freshwaters represent a major ecological and human health problem worldwide. This paper briefly summarizes information on major cyanobacterial toxins (hepatotoxins, neurotoxins etc.) with special attention to microcystins - cyclic heptapeptides with high acute and chronic toxicities. Besides discussion of human health risks, microcystin ecotoxicology and consequent ecological risks are also highlighted. Although significant research attention has been paid to microcystins, cyanobacteria produce a wide range of currently unknown toxins, which will require research attention. Further research should also address possible additive, synergistic or antagonistic effects among different classes of cyanobacterial metabolites, as well as interactions with other toxic stressors such as metals or persistent organic pollutants.


Environmental Toxicology and Chemistry | 2007

Ecotoxicity and genotoxicity assessment of cytostatic pharmaceuticals

Radka Zounková; Pavel Odráška; Lenka Doležalová; Klára Hilscherová; Blahoslav Maršálek; Luděk Bláha

The fate and effects of cytostatic (anticancer or antineoplastic) pharmaceuticals in the environment are largely unknown, but they can contaminate wastewater treatment effluents and consequently aquatic ecosystems. In this paper, we have focused on five cytostatic compounds used in high amounts (cyclophosphamide, cisplatin, 5-fluorouracil, doxorubicin, and etoposide), and we have investigated their ecotoxicity in bacterial Pseudomonas putida growth-inhibition test, algal Pseudokirchneriella subcapitata growth-inhibition test, and Dapnia magna acute immobilization test. Genotoxicity also was assessed with Escherichia coli SOS-chromotest (with and without metabolic activation) and the GreenScreen Assay using yeast S. cerevisiae. All tested compounds showed significant effects in most of the assays with lowest-observed-effect concentrations and concentrations causing 50% effects (EC50s) values ranging within microg/L to mg/L. The most toxic compound was 5-fluorouracil in the assays with P. putida (EC50 = 0.027 mg/L) and P. subcapitata (EC50 = 0.11 mg/L), although cisplatin and doxorubicin were the most toxic to D. magna (EC50 = 0.64 and 2.0 mg/L, respectively). These two chemicals were also the most genotoxic in the SOS-chromotest (minimum genotoxic concentrations [MGC] = 0.07-0.2 mg/L), and 5-fluorouracil was the most genotoxic in the eukaryotic yeast assay (MGC = 0.02 mg/L). Our investigation seems to indicate generally lower risks of acute effects at concentrations expected in the environment. However, some effective concentrations were relatively low and chronic toxicity of cytostatics (and/or their transformation products), as well as specific sources of human pharmaceuticals such as hospital effluents, require research attention.


Environment International | 2014

What level of estrogenic activity determined by in vitro assays in municipal waste waters can be considered as safe

Barbora Jarošová; Luděk Bláha; John P. Giesy; Klára Hilscherová

In vitro assays are broadly used tools to evaluate the estrogenic activity in Waste Water Treatment Plant (WWTP) effluents and their receiving rivers. Since potencies of individual estrogens to induce in vitro and in vivo responses can differ it is not possible to directly evaluate risks based on in vitro measures of estrogenic activity. Estrone, 17beta-estradiol, 17alfa-ethinylestradiol and to some extent, estriol have been shown to be responsible for the majority of in vitro estrogenic activity of municipal WWTP effluents. Therefore, in the present study safe concentrations of Estrogenic Equivalents (EEQs-SSE) in municipal WWTP effluents were derived based on simplified assumption that the steroid estrogens are responsible for all estrogenicity determined with particular in vitro assays. EEQs-SSEs were derived using the bioassay and testing protocol-specific in vitro potencies of steroid estrogens, in vivo predicted no effect concentration (PNECs) of these compounds, and their relative contributions to the overall estrogenicity detected in municipal WWTP effluents. EEQs-SSEs for 15 individual bioassays varied from 0.1 to 0.4ng EEQ/L. The EEQs-SSEs are supposed to be increased by use of location-specific dilution factors of WWTP effluents entering receiving rivers. They are applicable to municipal wastewater and rivers close to their discharges, but not to industrial waste waters.


Environmental Toxicology and Chemistry | 2007

MICROCYSTIN KINETICS (BIOACCUMULATION AND ELIMINATION) AND BIOCHEMICAL RESPONSES IN COMMON CARP (CYPRINUS CARPIO) AND SILVER CARP (HYPOPHTHALMICHTHYS MOLITRIX) EXPOSED TO TOXIC CYANOBACTERIAL BLOOMS

Ondřej Adamovský; Radovan Kopp; Klára Hilscherová; Pavel Babica; Miroslava Palíková; Veronika Pašková; Stanislav Navrátil; Blahoslav Maršálek; Luděk Bláha

Two species of common edible fish, common carp (Cyprinus carpio) and silver carp (Hypophthalmichthys molitrix), were exposed to a Microcystis spp.-dominated natural cyanobacterial water bloom for two months (concentrations of cyanobacterial toxin microcystin, 182-539 microg/g biomass dry wt). Toxins accumulated up to 1.4 to 29 ng/g fresh weight and 3.3 to 19 ng/g in the muscle of silver carp and common carp, respectively, as determined by enzyme-linked immunosorbent immunoassay. Concentrations an order of magnitude higher were detected in hepatopancreas (up to 226 ng/g in silver carp), with a peak after the initial four weeks. Calculated bioconcentration factors ranged from 0.6 to 1.7 for muscle and from 7.3 to 13.3 for hepatopancreas. Microcystins were completely eliminated within one to two weeks from both muscle and hepatopancreas after the transfer of fish with accumulated toxins to clean water. Mean estimated elimination half-lives ranged from 0.7 d in silver carp muscle to 8.4 d in common carp liver. The present study also showed significant modulations of several biochemical markers in hepatopancreas of fish exposed to cyanobacteria. Levels of glutathione and catalytic activities of glutathione S-transferase and glutathione reductase were induced in both species, indicating oxidative stress and enhanced detoxification processes. Calculation of hazard indexes using conservative U.S. Environmental Protection Agency methodology indicated rather low risks of microcystins accumulated in edible fish, but several uncertainties should be explored.


Environmental Toxicology and Chemistry | 2006

Toxic effects and oxidative stress in higher plants exposed to polycyclic aromatic hydrocarbons and their N‐heterocyclic derivatives

Veronika Pašková; Klára Hilscherová; Marie Feldmannová; Luděk Bláha

N-heterocyclic derivatives of polycyclic aromatic hydrocarbons (NPAHs) are widespread concomitantly with their parent analogues and have been detected in air, water, sediments, and soil. Although they were shown to be highly toxic to some organisms, our understanding of their occurrence, environmental fate, biological metabolism, and effects is limited. This study evaluated toxic effects of three homocyclic aromatic hydrocarbons (PAHs-phenanthrene, anthracene, fluorene) and their seven N-heterocyclic derivates on higher terrestrial plants Sinapis alba, Triticum aestivum, and Phaseolus vulgaris. Germinability, morphological endpoints, parameters of detoxification, and antioxidant components of plant metabolism as well as lipid peroxidation were studied in acute phytotoxicity tests. Phytotoxicity of NPAHs was generally more pronounced than the effects of parent PAHs, and it significantly differed with respect to the structure of individual NPAHs. Sinapis alba and T. aestivum were more sensitive plant species than P. vulgaris. Chemicals with the strongest inhibition effect on germination and growth of plants were phenanthridine, acridine, benzo[h]quinoline, and 1,10- and 1,7-phenanthroline. All tested chemicals significantly induced activities of detoxification and antioxidant enzymes (glutathione reductase, glutathione peroxidase, and glutathione-S-transferase) at nanomolar to low micromolar concentrations. Levels of reduced glutathione were induced by all tested chemicals except 1,10- and 4,7-phenanthroline. Furthermore, fluorene, carbazole, acridine, phenanthrene, phenanthridine, benzo[h]quinoline, and 1,7-phenanthroline significantly increased lipid peroxidation. The results of our study newly demonstrate significant toxicity of NPAHs to plants and demonstrate suitability of multiple biomarker assessment to characterize mechanisms of oxidative stress and to serve as an early warning of phytotoxicity in vivo.


Environment International | 2013

Estrogen-, androgen- and aryl hydrocarbon receptor mediated activities in passive and composite samples from municipal waste and surface waters.

Veronika Jálová; Barbora Jarošová; Luděk Bláha; John P. Giesy; Tomáš Ocelka; Roman Grabic; Jana Jurcikova; Branislav Vrana; Klára Hilscherová

Passive and composite sampling in combination with in vitro bioassays and identification and quantification of individual chemicals were applied to characterize pollution by compounds with several specific modes of action in urban area in the basin of two rivers, with 400,000 inhabitants and a variety of industrial activities. Two types of passive samplers, semipermeable membrane devices (SPMD) for hydrophobic contaminants and polar organic chemical integrative samplers (POCIS) for polar compounds such as pesticides and pharmaceuticals, were used to sample wastewater treatment plant (WWTP) influent and effluent as well as rivers upstream and downstream of the urban complex and the WWTP. Compounds with endocrine disruptive potency were detected in river water and WWTP influent and effluent. Year-round, monthly assessment of waste waters by bioassays documented estrogenic, androgenic and dioxin-like potency as well as cytotoxicity in influent waters of the WWTP and allowed characterization of seasonal variability of these biological potentials in waste waters. The WWTP effectively removed cytotoxic compounds, xenoestrogens and xenoandrogens. There was significant variability in treatment efficiency of dioxin-like potency. The study indicates that the WWTP, despite its up-to-date technology, can contribute endocrine disrupting compounds to the river. Riverine samples exhibited dioxin-like, antiestrogenic and antiandrogenic potencies. The study design enabled characterization of effects of the urban complex and the WWTP on the river. Concentrations of PAHs and contaminants and specific biological potencies sampled by POCIS decreased as a function of distance from the city.


Phycologia | 2007

Effects of dissolved microcystins on growth of planktonic photoautotrophs

Pavel Babica; Klára Hilscherová; Kateřina Bártová; Luděk Bláha; Blahoslav Maršálek

P. Babica, K. Hilscherová, K. Bártová, L. Bláha and B. Marŝálek. 2007. Effects of dissolved microcystins on growth of planktonic photoautotrphs. Phycologia 46: 137–142. DOI: 10.2216/06-24.1 Effects of cyanobacterial toxins microcystin-LR and -RR on growth of five representatives of Chlorophyta (Chlamydomonas reinhardtii, Chlorella kesslerii, Pediastrum duplex, Pseudokirchneriella subcapitata, Scenedesmus quadricauda) and cyanobacterium Microcystis aeruginosa (Cyanophyta) were investigated in the concentration range 1–25,000 μg l−1 using microplate assays (evaluated after 4, 7 and 11 days). Our results demostrate different susceptibility of several planktonic organisms to microcystins. In some species (C. reinhardtii, C. kesslerii, P. duplex, M. aeruginosa), microcystin-RR induced more pronounced effects on growth than structural variant microcystin-LR. However, environmentally relevant concentrations of microcystins (1–10 μg l−1) did not cause significant growth alterations. Also, concentrations 100–5000 μg l−1 were ineffective in most tested species with the exception of P. subcapitata. Growth of P. subcapitata was strongly inhibited at concentrations of microcystin-LR or -RR ≥ 1000 μg l−1 after 4 days of exposure, whereas S. quadricauda was affected only at concentration 25,000 μg l−1. C. reinhardtii and C. kesslerii responded to both microcystins at the highest experimental concentration, but effects of microcystin-LR were weak and apparent only after 11 days of exposure, while microcystin-RR inhibited alga growth from day 4. Growth of P. duplex was also reduced at 25,000 μg l−1 of microcystin-RR from day 4, but only slightly inhibited by microcystin-LR (after 4 and 7 days of exposure). Growth of M. aeruginosa was only slightly affected by microcystin-LR (inhibition at 25,000 μg l−1 on day 7) and inhibited by microcystin-RR especially at the highest experimental concentration. Our results suggest that microcystin effects on phytoplankton are species specific and congener specific. However, microcystins are not likely to affect proliferation of planktonic photoautotrophs at environmentally occurring conditions. These findings do not support a hypothesis of possible direct allelopathic natural function of microcystins, at least as far as growth inhibition effects are concerned.


Environmental Toxicology and Chemistry | 2011

Complex evaluation of ecotoxicity and genotoxicity of antimicrobials oxytetracycline and flumequine used in aquaculture

Radka Zounková; Zdeňka Klimešová; Leona Nepejchalová; Klára Hilscherová; Luděk Bláha

Ecotoxicity and genotoxicity of widely used veterinary antimicrobials oxytetracycline and flumequine was studied with six model organisms (Vibrio fischeri, Pseudomonas putida, Pseudokirchneriella subcapitata, Lemna minor, Daphnia magna, Escherichia coli). Overall median effective concentration (EC50) values ranged from 0.22 mg/L to 86 mg/L. Pseudomonas putida was the most sensitive organism (EC50 values for 16-h growth inhibition were 0.22 and 0.82 mg/L for oxytetracycline and flumequine, respectively), followed by duckweed Lemna minor (7-d growth inhibition, EC50 2.1 and 3.0 mg/L) and green alga Pseudokirchneriella subcapitata (4-d growth inhibition, EC50 3.1 and 2.6 mg/L). The least sensitive organism was Daphnia magna (48-h immobilization, lowest-observed-effect concentration [LOEC] of oxytetracycline of 400 mg/L). Oxytetracycline showed limited genotoxicity (SOS-chromotest with Escherichia coli, minimal genotoxic concentration of 500 mg/L), and flumequine was genotoxic at 0.25 mg/L. Based on the reported measured concentrations (MECs) and predicted no-effect concentrations (PNECs), oxytetracycline may be concluded to be of ecotoxicological concern (calculated risk quotient = 8), whereas flumequine seems to represent lower risk.

Collaboration


Dive into the Luděk Bláha's collaboration.

Top Co-Authors

Avatar

Blahoslav Maršálek

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Vondráček

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge