Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ludmil B. Alexandrov is active.

Publication


Featured researches published by Ludmil B. Alexandrov.


Nature | 2013

Signatures of mutational processes in human cancer

Ludmil B. Alexandrov; Serena Nik-Zainal; David C. Wedge; Samuel Aparicio; Sam Behjati; Andrew V. Biankin; Graham R. Bignell; Niccolo Bolli; Åke Borg; Anne Lise Børresen-Dale; Sandrine Boyault; Birgit Burkhardt; Adam Butler; Carlos Caldas; Helen Davies; Christine Desmedt; Roland Eils; Jórunn Erla Eyfjörd; John A. Foekens; Mel Greaves; Fumie Hosoda; Barbara Hutter; Tomislav Ilicic; Sandrine Imbeaud; Marcin Imielinsk; Natalie Jäger; David T. W. Jones; David Jones; Stian Knappskog; Marcel Kool

All cancers are caused by somatic mutations; however, understanding of the biological processes generating these mutations is limited. The catalogue of somatic mutations from a cancer genome bears the signatures of the mutational processes that have been operative. Here we analysed 4,938,362 mutations from 7,042 cancers and extracted more than 20 distinct mutational signatures. Some are present in many cancer types, notably a signature attributed to the APOBEC family of cytidine deaminases, whereas others are confined to a single cancer class. Certain signatures are associated with age of the patient at cancer diagnosis, known mutagenic exposures or defects in DNA maintenance, but many are of cryptic origin. In addition to these genome-wide mutational signatures, hypermutation localized to small genomic regions, ‘kataegis’, is found in many cancer types. The results reveal the diversity of mutational processes underlying the development of cancer, with potential implications for understanding of cancer aetiology, prevention and therapy.


Cell | 2012

Mutational processes molding the genomes of 21 breast cancers.

Serena Nik-Zainal; Ludmil B. Alexandrov; David C. Wedge; Peter Van Loo; Christopher Greenman; Keiran Raine; David Jones; Jonathan Hinton; John D Marshall; Lucy Stebbings; Andrew Menzies; Sancha Martin; Kenric Leung; Lina Chen; Catherine Leroy; Manasa Ramakrishna; Richard Rance; King Wai Lau; Laura Mudie; Ignacio Varela; David J. McBride; Graham R. Bignell; Susanna L. Cooke; Adam Shlien; John Gamble; Ian Whitmore; Mark Maddison; Patrick Tarpey; Helen Davies; Elli Papaemmanuil

Summary All cancers carry somatic mutations. The patterns of mutation in cancer genomes reflect the DNA damage and repair processes to which cancer cells and their precursors have been exposed. To explore these mechanisms further, we generated catalogs of somatic mutation from 21 breast cancers and applied mathematical methods to extract mutational signatures of the underlying processes. Multiple distinct single- and double-nucleotide substitution signatures were discernible. Cancers with BRCA1 or BRCA2 mutations exhibited a characteristic combination of substitution mutation signatures and a distinctive profile of deletions. Complex relationships between somatic mutation prevalence and transcription were detected. A remarkable phenomenon of localized hypermutation, termed “kataegis,” was observed. Regions of kataegis differed between cancers but usually colocalized with somatic rearrangements. Base substitutions in these regions were almost exclusively of cytosine at TpC dinucleotides. The mechanisms underlying most of these mutational signatures are unknown. However, a role for the APOBEC family of cytidine deaminases is proposed. PaperClip


Cell | 2012

The Life History of 21 Breast Cancers

Serena Nik-Zainal; Peter Van Loo; David C. Wedge; Ludmil B. Alexandrov; Christopher Greenman; King Wai Lau; Keiran Raine; David Jones; John Marshall; Manasa Ramakrishna; Adam Shlien; Susanna L. Cooke; Jonathan Hinton; Andrew Menzies; Lucy Stebbings; Catherine Leroy; Mingming Jia; Richard Rance; Laura Mudie; Stephen Gamble; Philip Stephens; Stuart McLaren; Patrick Tarpey; Elli Papaemmanuil; Helen Davies; Ignacio Varela; David J. McBride; Graham R. Bignell; Kenric Leung; Adam Butler

Summary Cancer evolves dynamically as clonal expansions supersede one another driven by shifting selective pressures, mutational processes, and disrupted cancer genes. These processes mark the genome, such that a cancers life history is encrypted in the somatic mutations present. We developed algorithms to decipher this narrative and applied them to 21 breast cancers. Mutational processes evolve across a cancers lifespan, with many emerging late but contributing extensive genetic variation. Subclonal diversification is prominent, and most mutations are found in just a fraction of tumor cells. Every tumor has a dominant subclonal lineage, representing more than 50% of tumor cells. Minimal expansion of these subclones occurs until many hundreds to thousands of mutations have accumulated, implying the existence of long-lived, quiescent cell lineages capable of substantial proliferation upon acquisition of enabling genomic changes. Expansion of the dominant subclone to an appreciable mass may therefore represent the final rate-limiting step in a breast cancers development, triggering diagnosis. PaperClip


Science | 2015

High burden and pervasive positive selection of somatic mutations in normal human skin

Inigo Martincorena; Amit Roshan; Moritz Gerstung; Peter Ellis; Peter Van Loo; Stuart McLaren; David C. Wedge; Anthony Fullam; Ludmil B. Alexandrov; Jose M. C. Tubio; Lucy Stebbings; Andrew Menzies; Sara Widaa; Michael R. Stratton; Philip H. Jones; Peter J. Campbell

Normal skins curiously abnormal genome Within every tumor, a battle is being waged. As individual tumor cells acquire new mutations that promote their survival and growth, they clonally expand at the expense of tumor cells that are “less fit.” Martincorena et al. sequenced 234 biopsies of sun-exposed but physiologically normal skin from four individuals (see the Perspective by Brash). They found a surprisingly high burden of mutations, higher than that of many tumors. Many of the mutations known to drive the growth of cutaneous squamous cell carcinomas were already under strong positive selection. More than a quarter of normal skin cells carried a driver mutation, and every square centimeter of skin contained hundreds of competing mutant clones. Science, this issue p. 880; see also p. 867 Sun-exposed but physiologically normal human skin harbors an unexpectedly high number of cancer-causing mutations. [Also see Perspective by Brash] How somatic mutations accumulate in normal cells is central to understanding cancer development but is poorly understood. We performed ultradeep sequencing of 74 cancer genes in small (0.8 to 4.7 square millimeters) biopsies of normal skin. Across 234 biopsies of sun-exposed eyelid epidermis from four individuals, the burden of somatic mutations averaged two to six mutations per megabase per cell, similar to that seen in many cancers, and exhibited characteristic signatures of exposure to ultraviolet light. Remarkably, multiple cancer genes are under strong positive selection even in physiologically normal skin, including most of the key drivers of cutaneous squamous cell carcinomas. Positively selected mutations were found in 18 to 32% of normal skin cells at a density of ~140 driver mutations per square centimeter. We observed variability in the driver landscape among individuals and variability in the sizes of clonal expansions across genes. Thus, aged sun-exposed skin is a patchwork of thousands of evolving clones with over a quarter of cells carrying cancer-causing mutations while maintaining the physiological functions of epidermis.


Nature Genetics | 2015

Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets

Kornelius Schulze; Sandrine Imbeaud; Eric Letouzé; Ludmil B. Alexandrov; Julien Calderaro; Sandra Rebouissou; Gabrielle Couchy; Clément Meiller; Jayendra Shinde; Frederic Soysouvanh; Anna Line Calatayud; Laura Pelletier; Charles Balabaud; Alexis Laurent; Jean Frédéric Blanc; Vincenzo Mazzaferro; Fabien Calvo; Augusto Villanueva; Jean Charles Nault; Paulette Bioulac-Sage; Michael R. Stratton; Josep M. Llovet; Jessica Zucman-Rossi

Genomic analyses promise to improve tumor characterization to optimize personalized treatment for patients with hepatocellular carcinoma (HCC). Exome sequencing analysis of 243 liver tumors identified mutational signatures associated with specific risk factors, mainly combined alcohol and tobacco consumption and exposure to aflatoxin B1. We identified 161 putative driver genes associated with 11 recurrently altered pathways. Associations of mutations defined 3 groups of genes related to risk factors and centered on CTNNB1 (alcohol), TP53 (hepatitis B virus, HBV) and AXIN1. Analyses according to tumor stage progression identified TERT promoter mutation as an early event, whereas FGF3, FGF4, FGF19 or CCND1 amplification and TP53 and CDKN2A alterations appeared at more advanced stages in aggressive tumors. In 28% of the tumors, we identified genetic alterations potentially targetable by US Food and Drug Administration (FDA)–approved drugs. In conclusion, we identified risk factor–specific mutational signatures and defined the extensive landscape of altered genes and pathways in HCC, which will be useful to design clinical trials for targeted therapy.


Nature | 2016

Landscape of somatic mutations in 560 breast cancer whole-genome sequences

Serena Nik-Zainal; Helen Davies; Johan Staaf; Manasa Ramakrishna; Dominik Glodzik; Xueqing Zou; Inigo Martincorena; Ludmil B. Alexandrov; Sancha Martin; David C. Wedge; Peter Van Loo; Young Seok Ju; Michiel M. Smid; Arie B. Brinkman; Sandro Morganella; Miriam Ragle Aure; Ole Christian Lingjærde; Anita Langerød; Markus Ringnér; Sung-Min Ahn; Sandrine Boyault; Jane E. Brock; Annegien Broeks; Adam Butler; Christine Desmedt; Luc Dirix; Serge Dronov; Aquila Fatima; John A. Foekens; Moritz Gerstung

We analysed whole genome sequences of 560 breast cancers to advance understanding of the driver mutations conferring clonal advantage and the mutational processes generating somatic mutations. 93 protein-coding cancer genes carried likely driver mutations. Some non-coding regions exhibited high mutation frequencies but most have distinctive structural features probably causing elevated mutation rates and do not harbour driver mutations. Mutational signature analysis was extended to genome rearrangements and revealed 12 base substitution and six rearrangement signatures. Three rearrangement signatures, characterised by tandem duplications or deletions, appear associated with defective homologous recombination based DNA repair: one with deficient BRCA1 function; another with deficient BRCA1 or BRCA2 function; the cause of the third is unknown. This analysis of all classes of somatic mutation across exons, introns and intergenic regions highlights the repertoire of cancer genes and mutational processes operative, and progresses towards a comprehensive account of the somatic genetic basis of breast cancer.


Cell Reports | 2013

Deciphering Signatures of Mutational Processes Operative in Human Cancer

Ludmil B. Alexandrov; Serena Nik-Zainal; David C. Wedge; Peter J. Campbell; Michael R. Stratton

Summary The genome of a cancer cell carries somatic mutations that are the cumulative consequences of the DNA damage and repair processes operative during the cellular lineage between the fertilized egg and the cancer cell. Remarkably, these mutational processes are poorly characterized. Global sequencing initiatives are yielding catalogs of somatic mutations from thousands of cancers, thus providing the unique opportunity to decipher the signatures of mutational processes operative in human cancer. However, until now there have been no theoretical models describing the signatures of mutational processes operative in cancer genomes and no systematic computational approaches are available to decipher these mutational signatures. Here, by modeling mutational processes as a blind source separation problem, we introduce a computational framework that effectively addresses these questions. Our approach provides a basis for characterizing mutational signatures from cancer-derived somatic mutational catalogs, paving the way to insights into the pathogenetic mechanism underlying all cancers.


Nature Communications | 2014

Heterogeneity of genomic evolution and mutational profiles in multiple myeloma

Niccolo Bolli; Hervé Avet-Loiseau; David C. Wedge; Peter Van Loo; Ludmil B. Alexandrov; Inigo Martincorena; Kevin J. Dawson; Francesco Iorio; Serena Nik-Zainal; Graham R. Bignell; Jonathan Hinton; Yilong Li; Jose M. C. Tubio; Stuart McLaren; Sarah O’Meara; Adam Butler; Jon Teague; Laura Mudie; Elizabeth Anderson; Naim Rashid; Yu-Tzu Tai; Masood A. Shammas; Adam Sperling; Mariateresa Fulciniti; Paul G. Richardson; Giovanni Parmigiani; Florence Magrangeas; Stephane Minvielle; Philippe Moreau; Michel Attal

Multiple myeloma is an incurable plasma cell malignancy with a complex and incompletely understood molecular pathogenesis. Here we use whole-exome sequencing, copy-number profiling and cytogenetics to analyse 84 myeloma samples. Most cases have a complex subclonal structure and show clusters of subclonal variants, including subclonal driver mutations. Serial sampling reveals diverse patterns of clonal evolution, including linear evolution, differential clonal response and branching evolution. Diverse processes contribute to the mutational repertoire, including kataegis and somatic hypermutation, and their relative contribution changes over time. We find heterogeneity of mutational spectrum across samples, with few recurrent genes. We identify new candidate genes, including truncations of SP140, LTB, ROBO1 and clustered missense mutations in EGR1. The myeloma genome is heterogeneous across the cohort, and exhibits diversity in clonal admixture and in dynamics of evolution, which may impact prognostic stratification, therapeutic approaches and assessment of disease response to treatment.


Nature Genetics | 2015

Analysis of the genetic phylogeny of multifocal prostate cancer identifies multiple independent clonal expansions in neoplastic and morphologically normal prostate tissue

Colin S. Cooper; Rosalind Eeles; David C. Wedge; Peter Van Loo; Gunes Gundem; Ludmil B. Alexandrov; Barbara Kremeyer; Adam Butler; Andy G. Lynch; Niedzica Camacho; Charlie E. Massie; Jonathan Kay; Hayley Luxton; Sandra Edwards; Zsofia Kote-Jarai; Nening Dennis; Sue Merson; Daniel Leongamornlert; Jorge Zamora; Cathy Corbishley; Sarah Thomas; Serena Nik-Zainal; Manasa Ramakrishna; Sarah O'Meara; Lucy Matthews; Jeremy Clark; Rachel Hurst; Richard Mithen; Robert G. Bristow; Paul C. Boutros

Genome-wide DNA sequencing was used to decrypt the phylogeny of multiple samples from distinct areas of cancer and morphologically normal tissue taken from the prostates of three men. Mutations were present at high levels in morphologically normal tissue distant from the cancer, reflecting clonal expansions, and the underlying mutational processes at work in morphologically normal tissue were also at work in cancer. Our observations demonstrate the existence of ongoing abnormal mutational processes, consistent with field effects, underlying carcinogenesis. This mechanism gives rise to extensive branching evolution and cancer clone mixing, as exemplified by the coexistence of multiple cancer lineages harboring distinct ERG fusions within a single cancer nodule. Subsets of mutations were shared either by morphologically normal and malignant tissues or between different ERG lineages, indicating earlier or separate clonal cell expansions. Our observations inform on the origin of multifocal disease and have implications for prostate cancer therapy in individual cases.


Cell | 2012

Genome Sequencing and Analysis of the Tasmanian Devil and Its Transmissible Cancer

Elizabeth P. Murchison; Ole Schulz-Trieglaff; Zemin Ning; Ludmil B. Alexandrov; Markus J. Bauer; Beiyuan Fu; Matthew M. Hims; Zhihao Ding; Sergii Ivakhno; Caitlin Stewart; Bee Ling Ng; Wendy Wong; Bronwen Aken; Simon White; Amber E. Alsop; Jennifer Becq; Graham R. Bignell; R. Keira Cheetham; William Cheng; Thomas Richard Connor; Anthony J. Cox; Zhi-Ping Feng; Yong Gu; Russell Grocock; Simon R. Harris; Irina Khrebtukova; Zoya Kingsbury; Mark Kowarsky; Alexandre Kreiss; Shujun Luo

Summary The Tasmanian devil (Sarcophilus harrisii), the largest marsupial carnivore, is endangered due to a transmissible facial cancer spread by direct transfer of living cancer cells through biting. Here we describe the sequencing, assembly, and annotation of the Tasmanian devil genome and whole-genome sequences for two geographically distant subclones of the cancer. Genomic analysis suggests that the cancer first arose from a female Tasmanian devil and that the clone has subsequently genetically diverged during its spread across Tasmania. The devil cancer genome contains more than 17,000 somatic base substitution mutations and bears the imprint of a distinct mutational process. Genotyping of somatic mutations in 104 geographically and temporally distributed Tasmanian devil tumors reveals the pattern of evolution and spread of this parasitic clonal lineage, with evidence of a selective sweep in one geographical area and persistence of parallel lineages in other populations. PaperClip

Collaboration


Dive into the Ludmil B. Alexandrov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael R. Stratton

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Peter J. Campbell

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Serena Nik-Zainal

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Inigo Martincorena

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Adam Butler

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Helen Davies

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Manasa Ramakrishna

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Peter Van Loo

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Patrick Tarpey

Wellcome Trust Sanger Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge