Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ludmil Benov is active.

Publication


Featured researches published by Ludmil Benov.


Free Radical Biology and Medicine | 1998

Critical evaluation of the use of hydroethidine as a measure of superoxide anion radical.

Ludmil Benov; Laura Sztejnberg; Irwin Fridovich

The fluorogenic oxidation of hydroethidine (HE) to ethidium (E+) has been used as a measure of O2-. Evaluation of this method confirms that O2-, but not O2 or H2O2, rapidly oxidizes HE to E+. However the ratio of E+ produced per O2- introduced decreased as the flux of O2- was increased. This suggested that HE can catalyze the dismutation of O2- and this was affirmed. HE was oxidized to a red product, distinct from E+ by ferricytochrome c and a similar oxidation may occur within Escherichia coli. HE inhibited the growth and killed a SOD-null strain to a greater extent than the SOD-replete parental strain and these effects were much diminished under anaerobic conditions. This indicated that E+ was responsible for the toxicity of HE and indeed E+ was seen to be toxic under both aerobic and anaerobic conditions. In view of the data presented HE can be recommended as a qualitative but not as a quantitative measure of O2(-1).


Journal of Biological Chemistry | 1998

THE ORTHO EFFECT MAKES MANGANESE(III) MESO-TETRAKIS-(N-METHYLPYRIDINIUM-2-YL)PORPHYRIN A POWERFUL AND POTENTIALLY USEFUL SUPEROXIDE DISMUTASE MIMIC

Ines Batinic-Haberle; Ludmil Benov; Ivan Spasojevic; Irwin Fridovich

The ortho, meta, andpara isomers of manganese(III) 5,10,15,20-tetrakis(N-methylpyridyl)porphyrin, MnTM-2-PyP5+, MnTM-3-PyP5+, and MnTM-4-PyP5+, respectively, were analyzed in terms of their superoxide dismutase (SOD) activity in vitro and in vivo. The impact of their interaction with DNA and RNA on the SOD activity in vivo and in vitro has also been analyzed. Differences in their behavior are due to the combined steric and electrostatic factors. In vitro catalytic activities are closely related to their redox potentials. The half-wave potentials (E½) are +0.220 mV, +0.052 mV, and +0.060 Vversus normal hydrogen electrode, whereas the rates of dismutation (k cat) are 6.0 × 107, 4.1 × 106, and 3.8 × 106 m −1 s−1 for theortho, meta, and para isomers, respectively. However, the in vitro activity is not a sufficient predictor of in vivo efficacy. The ortho andmeta isomers, although of significantly different in vitro SOD activities, have fairly close in vivo SOD efficacy due to their similarly weak interactions with DNA. In contrast, due to a higher degree of interaction with DNA, thepara isomer inhibited growth of SOD-deficientEscherichia coli.


Free Radical Biology and Medicine | 2009

Pure MnTBAP selectively scavenges peroxynitrite over superoxide: comparison of pure and commercial MnTBAP samples to MnTE-2-PyP in two models of oxidative stress injury, an SOD-specific Escherichia coli model and carrageenan-induced pleurisy.

Ines Batinic-Haberle; Salvatore Cuzzocrea; Júlio S. Rebouças; Gerardo Ferrer-Sueta; Emanuela Mazzon; Rosanna Di Paola; Rafael Radi; Ivan Spasojevic; Ludmil Benov; Daniela Salvemini

MnTBAP is often referred to as an SOD mimic in numerous models of oxidative stress. We have recently reported that pure MnTBAP does not dismute superoxide, but commercial or poorly purified samples are able to perform O2.- dismutation with low-to-moderate efficacy via non-innocent Mn-containing impurities. Herein, we show that neither commercial nor pure MnTBAP could substitute for SOD enzyme in a SOD-deficient Escherichia coli model, whereas MnTE-2-PyP-treated SOD-deficient E. coli grew as well as a wild-type strain. This SOD-specific system indicates that MnTBAP does not act as an SOD mimic in vivo. In another model, carrageenan-induced pleurisy in mice, inflammation was evidenced by increased pleural fluid exudate and neutrophil infiltration and activation: these events were blocked by 0.3 mg/kg MnTE-2-PyP and, to a slightly lesser extent, by 10 mg/kg of either MnTBAP. Also, 3-nitrotyrosine formation, an indication of peroxynitrite existence in vivo, was blocked by both compounds; again MnTE-2-PyP was 33-fold more effective. Pleurisy model data indicate that MnTBAP exerts some protective actions in common with MnTE-2-PyP, which are not O2.- related and can be fully rationalized if one considers that the common biological role shared by MnTBAP and MnTE-2-PyP is related to their reduction of peroxynitrite and carbonate radical, the latter arising from ONOOCO2 adduct. The log kcat (O2.-) value for MnTBAP is estimated to be about 3.16, which is approximately 5 and approximately 6 orders of magnitude smaller than the SOD activities of the potent SOD mimic MnTE-2-PyP and Cu,Zn-SOD, respectively. This very low value indicates that MnTBAP is too inefficient at dismuting superoxide to be of any biological impact, which was confirmed in the SOD-deficient E. coli model. The peroxynitrite scavenging ability of MnTBAP, however, is only approximately 2.5 orders of magnitude smaller than that of MnTE-2-PyP and is not significantly affected by the presence of the SOD-active impurities in the commercial MnTBAP sample (log k red (ONOO-) = 5.06 for pure and 4.97 for commercial sample). The reduction of carbonate radical is equally fast with MnTBAP and MnTE-2-PyP. The dose of MnTBAP required to yield oxidative stress protection and block nitrotyrosine formation in the pleurisy model is > 1.5 orders of magnitude higher than that of MnTE-2-PyP, which could be related to the lower ability of MnTBAP to scavenge peroxynitrite. The slightly better protection observed with the commercial MnTBAP sample (relative to the pure MnTBAP) could arise from its impurities, which, by scavenging O2.-, reduce consequently the overall peroxynitrite and secondary ROS/RNS levels. These observations have profound biological repercussions as they may suggest that the effect of MnTBAP observed in numerous studies may conceivably relate to peroxynitrite scavenging. Moreover, provided that pure MnTBAP is unable to dismute superoxide at any significant extent, but is able to partially scavenge peroxynitrite and carbonate radical, this compound may prove valuable in distinguishing ONOO-/CO3.- from O2.- pathways.


Medical Principles and Practice | 2015

Photodynamic Therapy: Current Status and Future Directions

Ludmil Benov

Photodynamic therapy (PDT) is a minimally invasive therapeutic modality used for the management of a variety of cancers and benign diseases. The destruction of unwanted cells and tissues in PDT is achieved by the use of visible or near-infrared radiation to activate a light-absorbing compound (a photosensitizer, PS), which, in the presence of molecular oxygen, leads to the production of singlet oxygen and other reactive oxygen species. These cytotoxic species damage and kill target cells. The development of new PSs with properties optimized for PDT applications is crucial for the improvement of the therapeutic outcome. This review outlines the principles of PDT and discusses the relationship between the structure and physicochemical properties of a PS, its cellular uptake and subcellular localization, and its effect on PDT outcome and efficacy.


Journal of Biological Chemistry | 1999

Induction of the soxRS Regulon of Escherichia coli by Superoxide

Stefan I. Liochev; Ludmil Benov; Daniele Touati; Irwin Fridovich

The soxRS regulon orchestrates a multifaceted defense against oxidative stress, by inducing the transcription of ∼15 genes. The induction of this regulon by redox agents, known to mediate O·̄2 production, led to the view that O·̄2 is one signal to which it responds. However, redox cycling agents deplete cellular reductants while producing O·̄2, and one may question whether the regulon responds to the depletion of some cytoplasmic reductant or to O·̄2, or both. We demonstrate that raising [O·̄2] by mutational deletion of superoxide dismutases and/or by addition of paraquat, both under aerobic conditions, causes induction of a member of the soxRS regulon and that a mutational defect in soxRS eliminates that induction. This establishes that O·̄2, directly or indirectly, can cause induction of this defensive regulon.


Free Radical Biology and Medicine | 2012

A new SOD mimic, Mn(III) ortho N-butoxyethylpyridylporphyrin, combines superb potency and lipophilicity with low toxicity

Zrinka Rajic; Artak Tovmasyan; Ivan Spasojevic; Huaxin Sheng; Miaomiao Lu; Alice M. Li; Edith Butler Gralla; David S. Warner; Ludmil Benov; Ines Batinic-Haberle

The Mn porphyrins of k(cat)(O(2)(.-)) as high as that of a superoxide dismutase enzyme and of optimized lipophilicity have already been synthesized. Their exceptional in vivo potency is at least in part due to their ability to mimic the site and location of mitochondrial superoxide dismutase, MnSOD. MnTnHex-2-PyP(5+) is the most studied among lipophilic Mn porphyrins. It is of remarkable efficacy in animal models of oxidative stress injuries and particularly in central nervous system diseases. However, when used at high single and multiple doses it becomes toxic. The toxicity of MnTnHex-2-PyP(5+) has been in part attributed to its micellar properties, i.e., the presence of polar cationic nitrogens and hydrophobic alkyl chains. The replacement of a CH(2) group by an oxygen atom in each of the four alkyl chains was meant to disrupt the porphyrin micellar character. When such modification occurs at the end of long alkyl chains, the oxygens become heavily solvated, which leads to a significant drop in the lipophilicity of porphyrin. However, when the oxygen atoms are buried deeper within the long heptyl chains, their excessive solvation is precluded and the lipophilicity preserved. The presence of oxygens and the high lipophilicity bestow the exceptional chemical and physical properties to Mn(III) meso-tetrakis(N-n-butoxyethylpyridinium-2-yl)porphyrin, MnTnBuOE-2-PyP(5+). The high SOD-like activity is preserved and even enhanced: log k(cat)(O(2)(.-))=7.83 vs 7.48 and 7.65 for MnTnHex-2-PyP(5+) and MnTnHep-2-PyP(5+), respectively. MnTnBuOE-2-PyP(5+) was tested in an O(2)(.-) -specific in vivo assay, aerobic growth of SOD-deficient yeast, Saccharomyces cerevisiae, where it was fully protective in the range of 5-30 μM. MnTnHep-2-PyP(5+) was already toxic at 5 μM, and MnTnHex-2-PyP(5+) became toxic at 30 μM. In a mouse toxicity study, MnTnBuOE-2-PyP(5+) was several-fold less toxic than either MnTnHex-2-PyP(5+) or MnTnHep-2-PyP(5+).


Journal of Medicinal Chemistry | 2009

High lipophilicity of meta Mn(III) N-alkylpyridylporphyrin-based superoxide dismutase mimics compensates for their lower antioxidant potency and makes them as effective as ortho analogues in protecting superoxide dismutase-deficient Escherichia coli.

Ivan Kos; Ludmil Benov; Ivan Spasojevic; Júlio S. Rebouças; Ines Batinic-Haberle

Lipophilicity/bioavailibility of Mn(III) N-alkylpyridylporphyrin-based superoxide dismutase (SOD) mimics has a major impact on their in vivo ability to suppress oxidative stress. Meta isomers are less potent SOD mimics than ortho analogues but are 10-fold more lipophilic and more planar. Enhanced lipophilicity contributes to their higher accumulation in cytosol of SOD-deficient Escherichia coli, compensating for their lower potency; consequently, both isomers exert similar-to-identical protection of SOD-deficient E. coli. Thus meta isomers may be prospective therapeutics as are ortho porphyrins.


Archives of Biochemistry and Biophysics | 2002

Manganese supplementation relieves the phenotypic deficits seen in superoxide-dismutase-null Escherichia coli.

May Al-Maghrebi; Irwin Fridovich; Ludmil Benov

Escherichia coli, lacking cytoplasmic superoxide dismutases, exhibits a variety of oxygen-dependent phenotypic deficits. Enrichment of the growth medium with Mn(II) relieved those deficits. Extracts of cells grown on Mn(II)-rich medium exhibited superoxide dismutase-like activity that was due partially to low-molecular-weight and partially to high-molecular-weight complexes. The high-molecular-weight activity was sensitive to proteolysis. Hence this activity is likely associated with low-affinity binding of Mn to proteins.


Journal of Biological Chemistry | 1998

Growth in iron-enriched medium partially compensates Escherichia coli for the lack of manganese and iron superoxide dismutase.

Ludmil Benov; Irwin Fridovich

Enrichment of the growth medium with iron partially relieves the phenotypic deficits imposed on Escherichia coli by lack of both manganese and iron superoxide dismutases. Thus iron supplementation increased the aerobic growth rate, decreased the leakage of sulfite, and diminished sensitivity toward paraquat. Iron supplementation increased the activities of several [4Fe-4S]-containing dehydratases, and this was seen even in the presence of 50 μg/ml of rifampicin, an amount which completely inhibited growth. Assessing the O·̄2 scavenging activity by means of lucigenin luminescence indicated that the iron-enrichedsodAsodB cells had gained some means of eliminating O·̄2, which was not detectable as superoxide dismutase activity in cell extracts. It is noteworthy that iron-enriched cells were not more sensitive toward the lethality of H2O2 despite having the usual amount of catalase activity. This indicates that iron taken into the cells from the medium is not available for Fenton chemistry, but is available for reconstitution of iron-sulfur clusters. We suppose that oxidation of the [4Fe-4S] clusters of dehydratases by O·̄2 and their subsequent reductive reconstitution provides a mechanism for scavenging O·̄2 and that speeding this reductive reconstitution by iron enrichment both spared other targets from O·̄2 attack and maintained adequate levels of these enzymes to meet the metabolic needs of the cells.


Inorganic Chemistry | 2013

Differential Coordination Demands in Fe versus Mn Water-Soluble Cationic Metalloporphyrins Translate into Remarkably Different Aqueous Redox Chemistry and Biology

Artak Tovmasyan; Tin Weitner; Huaxin Sheng; Miaomiao Lu; Zrinka Rajic; David S. Warner; Ivan Spasojevic; Júlio S. Rebouças; Ludmil Benov; Ines Batinic-Haberle

The different biological behavior of cationic Fe and Mn pyridylporphyrins in Escherichia coli and mouse studies prompted us to revisit and compare their chemistry. For that purpose, the series of ortho and meta isomers of Fe(III) meso-tetrakis-N-alkylpyridylporphyrins, alkyl being methyl to n-octyl, were synthesized and characterized by elemental analysis, UV/vis spectroscopy, mass spectrometry, lipophilicity, protonation equilibria of axial waters, metal-centered reduction potential, E(1/2) for M(III)P/M(II)P redox couple (M = Fe, Mn, P = porphyrin), kcat for the catalysis of O2(•-) dismutation, stability toward peroxide-driven porphyrin oxidative degradation (produced in the catalysis of ascorbate oxidation by MP), ability to affect growth of SOD-deficient E. coli, and toxicity to mice. Electron-deficiency of the metal site is modulated by the porphyrin ligand, which renders Fe(III) porphyrins ≥5 orders of magnitude more acidic than the analogous Mn(III) porphyrins, as revealed by the pKa1 of axially coordinated waters. The 5 log units difference in the acidity between the Mn and Fe sites in porphyrin translates into the predominance of tetracationic (OH)(H2O)FeP complexes relative to pentacationic (H2O)2MnP species at pH ∼7.8. This is additionally evidenced in large differences in the E(1/2) values of M(III)P/M(II)P redox couples. The presence of hydroxo ligand labilizes trans-axial water which results in higher reactivity of Fe relative to Mn center. The differences in the catalysis of O2(•-) dismutation (log kcat) between Fe and Mn porphyrins is modest, 2.5-5-fold, due to predominantly outer-sphere, with partial inner-sphere character of two reaction steps. However, the rate constant for the inner-sphere H2O2-based porphyrin oxidative degradation is 18-fold larger for (OH)(H2O)FeP than for (H2O)2MnP. The in vivo consequences of the differences between the Fe and Mn porphyrins were best demonstrated in SOD-deficient E. coli growth. On the basis of fairly similar log kcat(O2(•-)) values, a very similar effect on the growth of SOD-deficient E. coli was anticipated by both metalloporphyrins. Yet, while (H2O)2MnTE-2-PyP(5+) was fully efficacious at ≥20 μM, the Fe analogue (OH)(H2O)FeTE-2-PyP(4+) supported SOD-deficient E. coli growth at as much as 200-fold lower doses in the range of 0.1-1 μM. Moreover the pattern of SOD-deficient E. coli growth was different with Mn and Fe porphyrins. Such results suggested a different mode of action of these metalloporphyrins. Further exploration demonstrated that (1) 0.1 μM (OH)(H2O)FeTE-2-PyP(4+) provided similar growth stimulation as the 0.1 μM Fe salt, while the 20 μM Mn salt provides no protection to E. coli; and (2) 1 μM Fe porphyrin is fully degraded by 12 h in E. coli cytosol and growth medium, while Mn porphyrin is not. Stimulation of the aerobic growth of SOD-deficient E. coli by the Fe porphyrin is therefore due to iron acquisition. Our data suggest that in vivo, redox-driven degradation of Fe porphyrins resulting in Fe release plays a major role in their biological action. Possibly, iron reconstitutes enzymes bearing [4Fe-4S] clusters as active sites. Under the same experimental conditions, (OH)(H2O)FePs do not cause mouse arterial hypotension, whereas (H2O)2MnPs do, which greatly limits the application of Mn porphyrins in vivo.

Collaboration


Dive into the Ludmil Benov's collaboration.

Top Co-Authors

Avatar

Ines Batinic-Haberle

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Júlio S. Rebouças

Federal University of Paraíba

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivan Kos

University of Zagreb

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge