Ludmila A. Golovleva
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ludmila A. Golovleva.
Biodegradation | 1992
Ludmila A. Golovleva; Olga Zaborina; Raisa Pertsova; B. P. Baskunov; Yuri Schurukhin; Sergei Kuzmin
The strain Streptomyces rochei 303 (VKM Ac-1284D) is capable of utilizing 2-chloro-,2,4-,2,6-dichloro- and 2,4,6-trichlorophenols as the sole source of carbon. Its resting cells completely dechlorinated and degraded 2-, 3-chloro-; 2,4-, 2,6-, 2,3-, 2,5-, 3,4-, 3,5-dichloro-; 2,4-, 2,6-dibromo-; 2,4,6-, 2,4,5-, 2,3,4-, 2,3,5-, 2,3,6-trichlorophenols; 2,3,5,6-tetrachloro- and pentachlorophenol. During chlorophenol degradation, a stoichiometric amount of chloride ions was released and chlorohydroquinols were formed as intermediates. In cell-free extracts of S. rochei, the activity of hydroxyquinol 1,2-dioxygenase was found. The enzyme was induced with chlorophenols. Of all so far described strains degrading polychlorophenols, S. rochei 303 utilized a wider range of chlorinated phenols as the sole sourse of carbon and energy.
Journal of Industrial Microbiology & Biotechnology | 2001
Marelle G. Boersma; Inna P. Solyanikova; W.J.H. van Berkel; J. Vervoort; Ludmila A. Golovleva; Ivonne M. C. M. Rietjens
Of all NMR-observable isotopes 19F is the one most convenient for studies on the biodegradation of environmental pollutants and especially for fast initial metabolic screening of newly isolated organisms. In the past decade we have identified the 19F NMR characteristics of many fluorinated intermediates in the microbial degradation of fluoroaromatics including especially fluorophenols. In the present paper we give an overview of results obtained for the initial steps in the aerobic microbial degradation of fluorophenols, i.e. the aromatic hydroxylation to di-, tri- or even tetrahydroxybenzenes ultimately suitable as substrates for the second step, ring cleavage by dioxygenases. In addition we present new results from studies on the identification of metabolites resulting from reaction steps following aromatic ring cleavage, i.e. resulting from the conversion of fluoromuconates by chloromuconate cycloisomerase. Together the presented data illustrate the potential of the 19F NMR technique for (1) fast initial screening of biodegradative pathways, i.e. for studies on metabolomics in newly isolated microorganisms, and (2) identification of relatively unstable pathway intermediates like fluoromuconolactones and fluoromaleylacetates. Journal of Industrial Microbiology & Biotechnology (2001) 26, 22–34.
Biodegradation | 1998
V. S. Bondar; Marelle G. Boersma; E.L. Golovleva; J. Vervoort; W.J.H. van Berkel; Z.I. Finkelstein; Inna P. Solyanikova; Ludmila A. Golovleva; Ivonne M. C. M. Rietjens
Of all NMR observable isotopes 19F is the one perhaps most convenient for studies on biodegradation of environmental pollutants. The reasons underlying this potential of 19F NMR are discussed and illustrated on the basis of a study on the biodegradation of fluorophenols by four Rhodococcus strains. The results indicate marked differences between the biodegradation pathways of fluorophenols among the various Rhodococcus species. This holds not only for the level and nature of the fluorinated biodegradation pathway intermediates that accumulate, but also for the regioselectivity of the initial hydroxylation step. Several of the Rhodococcus species contain a phenol hydroxylase that catalyses the oxidative defluorination of ortho-fluorinated di- and trifluorophenols. Furthermore, it is illustrated how the 19F NMR technique can be used as a tool in the process of identification of an accumulated unknown metabolite, in this case most likely 5-fluoromaleylacetate. Altogether, the 19F NMR technique proved valid to obtain detailed information on the microbial biodegradation pathways of fluorinated organics, but also to provide information on the specificity of enzymes generally considered unstable and, for this reason, not much studied so far.
Biodegradation | 2000
Alexey Leontievsky; Nina M. Myasoedova; B.P. Baskunov; C.S. Evans; Ludmila A. Golovleva
The toxicity of thirteen isomers of mono-, di-, tri- and pentachlorophenols was tested in potato-dextrose agar cultures of the white rot fungi Panus tigrinus and Coriolus versicolor. 2,4,6-Trichlorophenol (2,4,6-TCP) was chosen for further study of its toxicity and transformation in liquid cultures of these fungi. Two schemes of 2,4,6-TCP addition were tested to minimize its toxic effect to fungal cultures: stepwise addition from the moment of inoculation and single addition after five days of growth. In both cases the ligninolytic enzyme systems of both fungi were found to be responsible for 2,4,6-TCP transformation. 2,6-Dichloro-1,4-hydroquinol and 2,6-dichloro-1,4-benzoquinone were found as products of primary oxidation of 2,4,6-TCP by intact fungal cultures and purified ligninolytic enzymes, Mn-peroxidases and laccases of both fungi. However, primary attack of 2,4,6-TCP in P. tigrinus culture was conducted mainly by Mn-peroxidase, while in C. versicolor it was catalyzed predominantly by laccase, suggesting a different mode of regulation of these enzymes in the two fungi.
Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes | 2004
Inna P. Solyanikova; Ludmila A. Golovleva
Abstract Chlorophenols belong to the group of toxic and persistent to microbial attack xenobiotics. Nevertheless, due to the adaptation microorganisms acquire the ability to use chlorophenols as the sole source of carbon and energy. The present review describes the diversity of aerobic pathways for the utilization of halogenated phenols by bacteria with the emphasis on the main reactions and intermediates formed, enzymes responsible for these reactions and their genetic basis. Taking into account (i) the fact that enzymes degrading chlorophenols are similar to the ones involved in the conversion of other (chloro)aromatic compounds and (ii) that present numerous publications describing the properties of separated enzymes or encoding their genes are published, this review was planned as the attempt to present both, the most general and specific aspects in chlorophenols degradation with the emphasis on the literature of the last ten years.
Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes | 2003
Vassili V. M. Travkin; Inna P. Solyanikova; Ivonne M. C. M. Rietjens; Jacques Vervoort; Willem J. H. van Berkel; Ludmila A. Golovleva
3,4‐Dichloro‐ and 3,4‐difluoroanilines were degraded by Pseudomonas fluorescens 26‐K under aerobic conditions. In the presence of glucose strain degraded 170 mg/L of 3,4‐dichloroaniline (3,4‐DCA) during 2–3 days. Increasing of toxicant concentration up to 250 mg/L led to degradation of 3,4‐DCA during 4 days and its intermediates during 5–7 days. Without cosubstrate and nitrogen source degradation of 3,4‐DCA took place too, but more slowly—about 40% of toxicant at initial concentration 75 mg/L was degraded during 15 days. 3,4‐Difluoroaniline (3,4‐DFA) (initial concentration 170 mg/L) was degraded by Pseudomonas fluorescens 26‐K during 5–7 days. The strain was able to completely degrade up to 90 mg/L of 3,4‐DFA, without addition of cosubstrate and nitrogen during 15 days. Degradation of fluorinated aniline was accompanied by intensive defluorination. Activity of catechol 2,3‐dioxygenase (C2,3DO) (0.230 μmol/min/mg of protein) was found in the culture liquid of the strain, grown with 3,4‐DCA and glucose. This fact, as well as, the presence of 3‐chloro‐4‐hydroxyaniline as a metabolite suggested that 3,4‐DCA degradation pathway includes dehalogenation and hydroxylation of aromatic ring followed by its subsequent cleaving by C2,3DO. On the contrary, activity of catechol 1,2‐dioxygenase (C1,2DO) (0.08 μmol/min/mg of protein) was found in the cell‐free extract of biomass grown on 3,4‐DFA. 3‐Fluoro‐4‐hydroxyaniline as intermediate was found in this cell‐free extract.
Biodegradation | 2008
Mikhail Baboshin; Vladimir Akimov; B. P. Baskunov; Timothy L. Born; Shahamat U. Khan; Ludmila A. Golovleva
A versatile bacterial strain able to convert polycyclic aromatic hydrocarbons (PAHs) was isolated, and a conversion by the isolate of both individual substances and PAH mixtures was investigated. The strain belonged to the Sphingomonas genus as determined on the basis of 16S rRNA analysis and was designated as VKM B-2434. The strain used naphthalene, acenaphthene, phenanthrene, anthracene and fluoranthene as a sole source of carbon and energy, and cometabolically oxidized fluorene, pyrene, benz[a]anthracene, chrysene and benzo[a]pyrene. Acenaphthene and fluoranthene were degraded by the strain via naphthalene-1,8-dicarboxylic acid and 3-hydroxyphthalic acid. Conversion of most other PAHs was confined to the cleavage of only one aromatic ring. The major oxidation products of naphthalene, phenanthrene, anthracene, chrysene, and benzo[a]pyrene were identified as salicylic acid, 1-hydroxy-2-naphthoic acid, 3-hydroxy-2-naphthoic acid, o-hydroxyphenanthroic acid and o-hydroxypyrenoic acid, respectively. Fluorene and pyrene were oxidized mainly to hydroxyfluorenone and dihydroxydihydropyrene, respectively. Oxidation of phenanthrene and anthracene to the corresponding hydroxynaphthoic acids occurred quantitatively. The strain converted phenanthrene, anthracene, fluoranthene and carbazole of coal-tar-pitch extract.
Journal of Biological Chemistry | 2005
Marta Ferraroni; Jana Seifert; Vasili M. Travkin; Monika Thiel; Stefan R. Kaschabek; Andrea Scozzafava; Ludmila A. Golovleva; Michael Schlömann; Fabrizio Briganti
Hydroxyquinol 1,2-dioxygenase (1,2-HQD) catalyzes the ring cleavage of hydroxyquinol (1,2,4-trihydroxybenzene), a central intermediate in the degradation of aromatic compounds including a variety of particularly recalcitrant polychloro- and nitroaromatic pollutants. We report here the primary sequence determination and the analysis of the crystal structure of the 1,2-HQD from Nocardioides simplex 3E solved at 1.75 Å resolution using the multiple wavelength anomalous dispersion of the two catalytic irons (1 Fe/293 amino acids). The catalytic Fe(III) coordination polyhedron composed by the side chains of Tyr164, Tyr197, His221, and His223 resembles that of the other known intradiol-cleaving dioxygenases, but several of the tertiary structure features are notably different. One of the most distinctive characteristics of the present structure is the extensive openings and consequent exposure to solvent of the upper part of the catalytic cavity arranged to favor the binding of hydroxyquinols but not catechols. A co-crystallized benzoate-like molecule is also found bound to the metal center forming a distinctive hydrogen bond network as observed previously also in 4-chlorocatechol 1,2-dioxygenase from Rhodococcus opacus 1CP. This is the first structure of an intradiol dioxygenase specialized in hydroxyquinol ring cleavage to be investigated in detail.
Journal of Structural Biology | 2010
Irene Matera; Marta Ferraroni; M. P. Kolomytseva; Ludmila A. Golovleva; Andrea Scozzafava; Fabrizio Briganti
The first crystallographic structures of a catechol 1,2-dioxygenase from a Gram-positive bacterium Rhodococcus opacus 1CP (Rho 1,2-CTD), a Fe(III) ion containing enzyme specialized in the aerobic biodegradation of catechols, and its adducts with catechol, 3-methylcatechol, 4-methylcatechol, pyrogallol (benzene-1,2,3-triol), 3-chlorocatechol, 4-chlorocatechol, 3,5-dichlorocatechol, 4,5-dichlorocatechol and protocatechuate (3,4-dihydroxybenzoate) have been determined and analyzed. This study represents the first extensive characterization of catechols adducts of 1,2-CTDs. The structural analyses reveal the diverse modes of binding to the active metal iron ion of the tested catechols thus allowing to identify the residues selectively involved in recognition of the diverse substrates by this class of enzymes. The comparison is further extended to the structural and functional characteristics of the other 1,2-CTDs isolated from Gram-positive and Gram-negative bacteria. Moreover the high structural homology of the present enzyme with the 3-chlorocatechol 1,2-dioxygenase from the same bacterium are discussed in terms of their different substrate specificity. The catalytic rates for Rho 1,2-CTD conversion of the tested compounds are also compared with the calculated energies of the highest occupied molecular orbital (E(HOMO)) of the substrates. A quantitative relationship (R=0.966) between the ln k(cat) and the calculated electronic parameter E(HOMO) was obtained for catechol, 3-methylcatechol, 4-methylcatechol, pyrogallol, 3-chlorocatechol, 4-chlorocatechol. This indicates that for these substrates the rate-limiting step of the reaction cycle is dependent on their nucleophilic reactivity. The discrepancies observed in the quantitative relationship for 3,5-dichlorocatechol, 4,5-dichlorocatechol and protocatechuate are ascribed to the sterical hindrances leading to the distorted binding of such catechols observed in the corresponding structures.
Biochemistry | 2001
O. V. Moiseeva; O. V. Belova; Inna P. Solyanikova; Michael Schlömann; Ludmila A. Golovleva
Chlorocatechol 1,2-dioxygenase (CC 1,2-DO), chloromuconate cycloisomerase (CMCI), chloromuconolactone isomerase (CMLI), and dienolactone hydrolase (DELH), the key enzymes of a new modified ortho-pathway in Rhodococcus opacus 1CP cells utilizing 2-chlorophenol via a 3-chlorocatechol branch of a modified ortho-pathway, were isolated and characterized. CC 1,2-DO showed the maximum activity with 3-chlorocatechol; its activity with catechol and 4-chlorocatechol was 93 and 50%, respectively. The enzyme of the studied pathway had physicochemical properties intermediate between the pyrocatechase of ordinary and chlorocatechase of modified pathways described earlier for this strain. In contrast to the enzymes investigated earlier, CMCI of the new pathway exhibited high substrate specificity. The enzyme had Km for 2-chloromuconate of 142.86 μM, Vmax = 71.43 U/mg, pH optimum around 6.0, and temperature optimum at 65°C. CMCI converted 2-chloromuconate into 5-chloromuconolactone. CMLI converted 5-chloromuconolactone into cis-dienolactone used as a substrate by DELH; this enzyme did not convert trans-dienolactone. DELH had Km for cis-dienolactone of 200 μM, Vmax = 167 U/mg, pH optimum of 8.6, and temperature optimum of 40°C. These results confirm the existence of a new modified ortho-pathway for utilization of 2-chlorophenol by R. opacus 1CP.