Ludmila Frolova
Engelhardt Institute of Molecular Biology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ludmila Frolova.
RNA | 1999
Ludmila Frolova; Ruslan Yu. Tsivkovskii; Galina F. Sivolobova; Nina Yu. Oparina; Oleg Igorevich Serpinsky; Vladimir M. Blinov; Sergey I. Tatkov; Lev L. Kisselev
Although the primary structures of class 1 polypeptide release factors (RF1 and RF2 in prokaryotes, eRF1 in eukaryotes) are known, the molecular basis by which they function in translational termination remains obscure. Because all class 1 RFs promote a stop-codon-dependent and ribosome-dependent hydrolysis of peptidyl-tRNAs, one may anticipate that this common function relies on a common structural motif(s). We have compared amino acid sequences of the available class 1 RFs and found a novel, common, unique, and strictly conserved GGQ motif that should be in a loop (coil) conformation as deduced by programs predicting protein secondary structure. Site-directed mutagenesis of the human eRF1 as a representative of class 1 RFs shows that substitution of both glycyl residues in this motif, G183 and G184, causes complete inactivation of the protein as a release factor toward all three stop codons, whereas two adjacent amino acid residues, G181 and R182, are functionally nonessential. Inactive human eRF1 mutants compete in release assays with wild-type eRF1 and strongly inhibit their release activity. Mutations of the glycyl residues in this motif do not affect another function, the ability of eRF1 together with the ribosome to induce GTPase activity of human eRF3, a class 2 RF. We assume that the novel highly conserved GGQ motif is implicated directly or indirectly in the activity of class 1 RFs in translation termination.
The EMBO Journal | 2003
Lev L. Kisselev; Måns Ehrenberg; Ludmila Frolova
Termination of translation in eukaryotes has focused recently on functional anatomy of polypeptide chain release factor, eRF1, by using a variety of different approaches. The tight correlation between the domain structure and different functions of eRF1 has been revealed. Independently, the role of prokaryotic RF1/2 in GTPase activity of RF3 has been deciphered, as well as RF3 function itself.
RNA | 2002
Ludmila Frolova; Alim Seit-Nebi; Lev L. Kisselev
Class-1 polypeptide chain release factors (RFs) play a key role in translation termination. Eukaryotic (eRF1) and archaeal class-1 RFs possess a highly conserved Asn-Ile-Lys-Ser (NIKS) tetrapeptide located at the N-terminal domain of human eRF1. In the three-dimensional structure, NIKS forms a loop between helices. The universal occurrence and exposed nature of this motif provoke the appearance of hypotheses postulating an essential role of this tetrapeptide in stop codon recognition and ribosome binding. To approach this problem experimentally, site-directed mutagenesis of the NIKS (positions 61-64) in human eRF1 and adjacent amino acids has been applied followed by determination of release activity and ribosome-binding capacity of mutants. Substitutions of Asn61 and Ile62 residues of the NIKS cause a decrease in the ability of eRF1 mutants to promote termination reaction in vitro, but to a different extent depending on the stop codon specificity, position, and nature of the substituting residues. This observation points to a possibility that Asn-Ile dipeptide modulates the specific recognition of the stop codons by eRF1. Some replacements at positions 60, 63, and 64 cause a negligible (if any) effect in contrast to what has been deduced from some current hypotheses predicting the structure of the termination codon recognition site in eRF1. Reduction in ribosome binding revealed for Ile62, Ser64, Arg65, and Arg68 mutants argues in favor of the essential role played by the right part of the NIKS loop in interaction with the ribosome, most probably with ribosomal RNA.
EMBO Reports | 2002
Alim Seit-Nebi; Ludmila Frolova; Lev L. Kisselev
In eukaryotic ribosomes, termination of translation is triggered by class 1 polypeptide release factor, eRF1. In organisms with a universal code, eRF1 responds to three stop codons, whereas, in ciliates with variant codes, only one or two codon(s) remain(s) as stop signals. By mutagenesis of the Y–C–F minidomain of the N domain, we converted an omnipotent human eRF1 recognizing all three stop codons into a unipotent ‘ciliate‐like’ UGA‐only eRF1. The conserved Cys127 located in the Y–C–F minidomain plays a critical role in stop codon recognition. The UGA‐only response has also been achieved by concomitant substitutions of four other amino acids located at the Y–C–F and NIKS minidomains of eRF1. We suggest that for eRF1 the stop codon decoding is of a non‐linear (non‐protein‐anticodon) type and explores a combination of positive and negative determinants. We assume that stop codon recognition is profoundly different by eukaryotic and prokaryotic class 1 RFs.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Koichi Ito; Ludmila Frolova; Alim Seit-Nebi; Andrey L. Karamyshev; Lev L. Kisselev; Yoshikazu Nakamura
In eukaryotes, a single translational release factor, eRF1, deciphers three stop codons, although its decoding mechanism remains puzzling. In the ciliate Tetrahymena thermophila, UAA and UAG codons are reassigned to Gln codons. A yeast eRF1-domain swap containing Tetrahymena domain 1 responded only to UGA in vitro and failed to complement a defect in yeast eRF1 in vivo at 37°C. This finding demonstrates that decoding specificity of eRF1 from variant code organisms resides at domain 1. However, the wild-type eRF1 hybrid fully restored the growth of eRF1-deficient yeast at 30°C. Tetrahymena eRF1 contains a variant sequence, KATNIKD, at the tip of domain 1. The TASNIKD variant of hybrid eRF1 rendered the eRF1-nullified yeast viable, although in an in vitro assay, the same hybrid eRF1 responded only to UGA. Nevertheless, the yeast eRF1 bearing the KATNIKD motif instead of the TASNIKS heptapeptide present in higher eukaryotes remains omnipotent in vivo. Collectively, these data suggest that variant genetic code organisms like Tetrahymena have an intrinsic potential to decode three stop codons in vivo, and that interaction within domain 1 between the KAT tripeptide and other sequences modulates the decoding specificity of Tetrahymena eRF1.
Nucleic Acids Research | 2005
Petr M. Kolosov; Ludmila Frolova; Alim Seit-Nebi; V. I. Dubovaya; Artem V. Kononenko; Nina Oparina; Just Justesen; Alexandr Efimov; Lev L. Kisselev
In eukaryotic ribosome, the N domain of polypeptide release factor eRF1 is involved in decoding stop signals in mRNAs. However, structure of the decoding site remains obscure. Here, we specifically altered the stop codon recognition pattern of human eRF1 by point mutagenesis of the invariant Glu55 and Tyr125 residues in the N domain. The 3D structure of generated eRF1 mutants was not destabilized as demonstrated by calorimetric measurements and calculated free energy perturbations. In mutants, the UAG response was most profoundly and selectively affected. Surprisingly, Glu55Arg mutant completely retained its release activity. Substitution of the aromatic ring in position 125 reduced response toward all stop codons. This result demonstrates the critical importance of Tyr125 for maintenance of the intact structure of the eRF1 decoding site. The results also suggest that Tyr125 is implicated in recognition of the 3d stop codon position and probably forms an H-bond with Glu55. The data point to a pivotal role played by the YxCxxxF motif (positions 125–131) in purine discrimination of the stop codons. We speculate that eRF1 decoding site is formed by a 3D network of amino acids side chains.
EMBO Reports | 2001
Stéphanie Kervestin; Ludmila Frolova; Lev Kisselev; Olivier Jean-Jean
In eukaryotes, the polypeptide release factor 1 (eRF1) is involved in translation termination at all three stop codons. However, the mechanism for decoding stop codons remains unknown. A direct interaction of eRF1 with the stop codons has been postulated. Recent studies focus on eRF1 from ciliates in which some stop codons are reassigned to sense codons. Using an in vitro assay based on mammalian ribosomes, we show that eRF1 from the ciliate Euplotes aediculatus responds to UAA and UAG as stop codons and lacks the capacity to decipher the UGA codon, which encodes cysteine in this organism. This result strongly suggests that in ciliates with variant genetic codes eRF1 does not recognize the reassigned codons. Recent hypotheses describing stop codon discrimination by eRF1 are not fully consistent with the set of eRF1 sequences available so far and require direct experimental testing.
FEBS Letters | 2002
K. N. Bulygin; M. N. Repkova; Aliya Ven'yaminova; D. M. Graifer; G. G. Karpova; Ludmila Frolova; Lev L. Kisselev
To study positioning of the mRNA stop signal with respect to polypeptide chain release factors (RFs) and ribosomal components within human 80S ribosomes, photoreactive mRNA analogs were applied. Derivatives of the UUCUAAA heptaribonucleotide containing the UUC codon for Phe and the stop signal UAAA, which bore a perfluoroaryl azido group at either the fourth nucleotide or the 3′‐terminal phosphate, were synthesized. The UUC codon was directed to the ribosomal P site by the cognate tRNAPhe, targeting the UAA stop codon to the A site. Mild UV irradiation of the ternary complexes consisting of the 80S ribosome, the mRNA analog and tRNA resulted in tRNA‐dependent crosslinking of the mRNA analogs to the 40S ribosomal proteins and the 18S rRNA. mRNA analogs with the photoreactive group at the fourth uridine (the first base of the stop codon) crosslinked mainly to protein S15 (and much less to S2). For the 3′‐modified mRNA analog, the major crosslinking target was protein S2, while protein S15 was much less crosslinked. Crosslinking of eukaryotic (e) RF1 was entirely dependent on the presence of a stop signal in the mRNA analog. eRF3 in the presence of eRF1 did not crosslink, but decreased the yield of eRF1 crosslinking. We conclude that (i) proteins S15 and S2 of the 40S ribosomal subunit are located near the A site‐bound codon; (ii) eRF1 can induce spatial rearrangement of the 80S ribosome leading to movement of protein L4 of the 60S ribosomal subunit closer to the codon located at the A site; (iii) within the 80S ribosome, eRF3 in the presence of eRF1 does not contact the stop codon at the A site and is probably located mostly (if not entirely) on the 60S subunit.
Molecular Cell | 2014
Tianshu Feng; Atsushi Yamamoto; Sarah E. Wilkins; Elizaveta Sokolova; Luke A. Yates; Martin Münzel; Pooja Singh; Richard J. Hopkinson; R. Fischer; Matthew E. Cockman; Jake Shelley; David C. Trudgian; Johannes Schödel; James S. O. McCullagh; Wei Ge; Benedikt M. Kessler; Robert J. C. Gilbert; Ludmila Frolova; Elena Alkalaeva; Peter J. Ratcliffe; Christopher J. Schofield; Mathew L. Coleman
Summary Efficient stop codon recognition and peptidyl-tRNA hydrolysis are essential in order to terminate translational elongation and maintain protein sequence fidelity. Eukaryotic translational termination is mediated by a release factor complex that includes eukaryotic release factor 1 (eRF1) and eRF3. The N terminus of eRF1 contains highly conserved sequence motifs that couple stop codon recognition at the ribosomal A site to peptidyl-tRNA hydrolysis. We reveal that Jumonji domain-containing 4 (Jmjd4), a 2-oxoglutarate- and Fe(II)-dependent oxygenase, catalyzes carbon 4 (C4) lysyl hydroxylation of eRF1. This posttranslational modification takes place at an invariant lysine within the eRF1 NIKS motif and is required for optimal translational termination efficiency. These findings further highlight the role of 2-oxoglutarate/Fe(II) oxygenases in fundamental cellular processes and provide additional evidence that ensuring fidelity of protein translation is a major role of hydroxylation.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Sergey Lekomtsev; Petr M. Kolosov; Laure Bidou; Ludmila Frolova; Jean-Pierre Rousset; Lev L. Kisselev
In universal-code eukaryotes, a single-translation termination factor, eukaryote class-1 polypeptide release factor (eRF1), decodes the three stop codons: UAA, UAG, and UGA. In some ciliates, like Stylonychia and Paramecium, eRF1s exhibit UGA-only decoding specificity, whereas UAG and UAA are reassigned as sense codons. Because variant-code ciliates may have evolved from universal-code ancestor(s), structural features should exist in ciliate eRF1s that restrict their stop codon recognition. In omnipotent eRF1s, stop codon recognition is associated with the N-terminal domain of the protein. Using both in vitro and in vivo assays, we show here that chimeric molecules composed of the N-terminal domain of Stylonychia eRF1 fused to the core domain (MC domain) of human eRF1 retained specificity toward UGA; this unambiguously associates eRF1 stop codon specificity to the nature of its N-terminal domain. Functional analysis of eRF1 chimeras constructed by swapping ciliate N-terminal domain sequences with the matching ones from the human protein highlighted the crucial role of the tripeptide QFM in restricting Stylonychia eRF1 specificity toward UGA. Using the site-directed mutagenesis, we show that Paramecium eRF1 specificity toward UGA resides within the NIKS (amino acids 61–64) and YxCxxxF (amino acids 124–131) motifs. Thus, we establish that eRF1 from two different ciliates relies on different molecular mechanisms to achieve specificity toward the UGA stop codon. This finding suggests that eRF1 restriction of specificity to only UGA might have been an early event occurring in independent instances in ciliate evolutionary history, possibly facilitating the reassignment of UAG and UAA to sense codons.