Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ludmila P. Osipova is active.

Publication


Featured researches published by Ludmila P. Osipova.


Nature | 2012

Reconstructing Native American population history.

David Reich; Nick Patterson; Desmond D. Campbell; Arti Tandon; Stéphane Mazières; Nicolas Ray; María Victoria Parra; Winston Rojas; Constanza Duque; Natalia Mesa; Luis F. García; Omar Triana; Silvia Blair; Amanda Maestre; Juan C. Dib; Claudio M. Bravi; Graciela Bailliet; Daniel Corach; Tábita Hünemeier; Maria-Cátira Bortolini; Francisco M. Salzano; Maria Luiza Petzl-Erler; Victor Acuña-Alonzo; Carlos A. Aguilar-Salinas; Samuel Canizales-Quinteros; Teresa Tusié-Luna; Laura Riba; Maricela Rodríguez-Cruz; Mardia Lopez-Alarcón; Ramón Coral-Vazquez

The peopling of the Americas has been the subject of extensive genetic, archaeological and linguistic research; however, central questions remain unresolved. One contentious issue is whether the settlement occurred by means of a single migration or multiple streams of migration from Siberia. The pattern of dispersals within the Americas is also poorly understood. To address these questions at a higher resolution than was previously possible, we assembled data from 52 Native American and 17 Siberian groups genotyped at 364,470 single nucleotide polymorphisms. Here we show that Native Americans descend from at least three streams of Asian gene flow. Most descend entirely from a single ancestral population that we call ‘First American’. However, speakers of Eskimo–Aleut languages from the Arctic inherit almost half their ancestry from a second stream of Asian gene flow, and the Na-Dene-speaking Chipewyan from Canada inherit roughly one-tenth of their ancestry from a third stream. We show that the initial peopling followed a southward expansion facilitated by the coast, with sequential population splits and little gene flow after divergence, especially in South America. A major exception is in Chibchan speakers on both sides of the Panama isthmus, who have ancestry from both North and South America.


Nature | 2014

Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans

Maanasa Raghavan; Pontus Skoglund; Kelly E. Graf; Mait Metspalu; Anders Albrechtsen; Ida Moltke; Simon Rasmussen; Thomas W. Stafford; Ludovic Orlando; Ene Metspalu; Monika Karmin; Kristiina Tambets; Siiri Rootsi; Reedik Mägi; Paula F. Campos; Elena Balanovska; Oleg Balanovsky; Elza Khusnutdinova; Sergey Litvinov; Ludmila P. Osipova; Sardana A. Fedorova; M. I. Voevoda; Michael DeGiorgio; Thomas Sicheritz-Pontén; Søren Brunak; Svetlana Demeshchenko; Toomas Kivisild; Richard Villems; Rasmus Nielsen; Mattias Jakobsson

The origins of the First Americans remain contentious. Although Native Americans seem to be genetically most closely related to east Asians, there is no consensus with regard to which specific Old World populations they are closest to. Here we sequence the draft genome of an approximately 24,000-year-old individual (MA-1), from Mal’ta in south-central Siberia, to an average depth of 1×. To our knowledge this is the oldest anatomically modern human genome reported to date. The MA-1 mitochondrial genome belongs to haplogroup U, which has also been found at high frequency among Upper Palaeolithic and Mesolithic European hunter-gatherers, and the Y chromosome of MA-1 is basal to modern-day western Eurasians and near the root of most Native American lineages. Similarly, we find autosomal evidence that MA-1 is basal to modern-day western Eurasians and genetically closely related to modern-day Native Americans, with no close affinity to east Asians. This suggests that populations related to contemporary western Eurasians had a more north-easterly distribution 24,000 years ago than commonly thought. Furthermore, we estimate that 14 to 38% of Native American ancestry may originate through gene flow from this ancient population. This is likely to have occurred after the divergence of Native American ancestors from east Asian ancestors, but before the diversification of Native American populations in the New World. Gene flow from the MA-1 lineage into Native American ancestors could explain why several crania from the First Americans have been reported as bearing morphological characteristics that do not resemble those of east Asians. Sequencing of another south-central Siberian, Afontova Gora-2 dating to approximately 17,000 years ago, revealed similar autosomal genetic signatures as MA-1, suggesting that the region was continuously occupied by humans throughout the Last Glacial Maximum. Our findings reveal that western Eurasian genetic signatures in modern-day Native Americans derive not only from post-Columbian admixture, as commonly thought, but also from a mixed ancestry of the First Americans.


American Journal of Human Genetics | 1999

The Central Siberian Origin for Native American Y Chromosomes

Fabrício R. Santos; Arpita Pandya; Chris Tyler-Smith; Sérgio D.J. Pena; Moses S. Schanfield; William R. Leonard; Ludmila P. Osipova; Michael H. Crawford; R. John Mitchell

Y chromosomal DNA polymorphisms were used to investigate Pleistocene male migrations to the American continent. In a worldwide sample of 306 men, we obtained 32 haplotypes constructed with the variation found in 30 distinct polymorphic sites. The major Y haplotype present in most Native Americans was traced back to recent ancestors common with Siberians, namely, the Kets and Altaians from the Yenissey River Basin and Altai Mountains, respectively. Going further back, the next common ancestor gave rise also to Caucasoid Y chromosomes, probably from the central Eurasian region. This study, therefore, suggests a predominantly central Siberian origin for Native American paternal lineages for those who could have migrated to the Americas during the Upper Pleistocene.


Science | 2015

Genomic evidence for the Pleistocene and recent population history of Native Americans

Maanasa Raghavan; Matthias Steinrücken; Kelley Harris; Stephan Schiffels; Simon Rasmussen; Michael DeGiorgio; Anders Albrechtsen; Cristina Valdiosera; María C. Ávila-Arcos; Anna-Sapfo Malaspinas; Anders Eriksson; Ida Moltke; Mait Metspalu; Julian R. Homburger; Jeffrey D. Wall; Omar E. Cornejo; J. Víctor Moreno-Mayar; Thorfinn Sand Korneliussen; Tracey Pierre; Morten Rasmussen; Paula F. Campos; Peter de Barros Damgaard; Morten E. Allentoft; John Lindo; Ene Metspalu; Ricardo Rodríguez-Varela; Josefina Mansilla; Celeste Henrickson; Andaine Seguin-Orlando; Helena Malmström

Genetic history of Native Americans Several theories have been put forth as to the origin and timing of when Native American ancestors entered the Americas. To clarify this controversy, Raghavan et al. examined the genomic variation among ancient and modern individuals from Asia and the Americas. There is no evidence for multiple waves of entry or recurrent gene flow with Asians in northern populations. The earliest migrations occurred no earlier than 23,000 years ago from Siberian ancestors. Amerindians and Athabascans originated from a single population, splitting approximately 13,000 years ago. Science, this issue 10.1126/science.aab3884 Genetic variation within ancient and extant Native American populations informs on their migration into the Americas. INTRODUCTION The consensus view on the peopling of the Americas is that ancestors of modern Native Americans entered the Americas from Siberia via the Bering Land Bridge and that this occurred at least ~14.6 thousand years ago (ka). However, the number and timing of migrations into the Americas remain controversial, with conflicting interpretations based on anatomical and genetic evidence. RATIONALE In this study, we address four major unresolved issues regarding the Pleistocene and recent population history of Native Americans: (i) the timing of their divergence from their ancestral group, (ii) the number of migrations into the Americas, (iii) whether there was ~15,000 years of isolation of ancestral Native Americans in Beringia (Beringian Incubation Model), and (iv) whether there was post-Pleistocene survival of relict populations in the Americas related to Australo-Melanesians, as suggested by apparent differences in cranial morphologies between some early (“Paleoamerican”) remains and those of more recent Native Americans. We generated 31 high-coverage modern genomes from the Americas, Siberia, and Oceania; 23 ancient genomic sequences from the Americas dating between ~0.2 and 6 ka; and SNP chip genotype data from 79 present-day individuals belonging to 28 populations from the Americas and Siberia. The above data sets were analyzed together with published modern and ancient genomic data from worldwide populations, after masking some present-day Native Americans for recent European admixture. RESULTS Using three different methods, we determined the divergence time for all Native Americans (Athabascans and Amerindians) from their Siberian ancestors to be ~20 ka, and no earlier than ~23 ka. Furthermore, we dated the divergence between Athabascans (northern Native American branch, together with northern North American Amerindians) and southern North Americans and South and Central Americans (southern Native American branch) to be ~13 ka. Similar divergence times from East Asian populations and a divergence time between the two branches that is close in age to the earliest well-established archaeological sites in the Americas suggest that the split between the branches occurred within the Americas. We additionally found that several sequenced Holocene individuals from the Americas are related to present-day populations from the same geographical regions, implying genetic continuity of ancient and modern populations in some parts of the Americas over at least the past 8500 years. Moreover, our results suggest that there has been gene flow between some Native Americans from both North and South America and groups related to East Asians and Australo-Melanesians, the latter possibly through an East Asian route that might have included ancestors of modern Aleutian Islanders. Last, using both genomic and morphometric analyses, we found that historical Native American groups such as the Pericúes and Fuego-Patagonians were not “relicts” of Paleoamericans, and hence, our results do not support an early migration of populations directly related to Australo-Melanesians into the Americas. CONCLUSION Our results provide an upper bound of ~23 ka on the initial divergence of ancestral Native Americans from their East Asian ancestors, followed by a short isolation period of no more than ~8000 years, and subsequent entrance and spread across the Americas. The data presented are consistent with a single-migration model for all Native Americans, with later gene flow from sources related to East Asians and, indirectly, Australo-Melanesians. The single wave diversified ~13 ka, likely within the Americas, giving rise to the northern and southern branches of present-day Native Americans. Population history of present-day Native Americans. The ancestors of all Native Americans entered the Americas as a single migration wave from Siberia (purple) no earlier than ~23 ka, separate from the Inuit (green), and diversified into “northern” and “southern” Native American branches ~13 ka. There is evidence of post-divergence gene flow between some Native Americans and groups related to East Asians/Inuit and Australo-Melanesians (yellow). How and when the Americas were populated remains contentious. Using ancient and modern genome-wide data, we found that the ancestors of all present-day Native Americans, including Athabascans and Amerindians, entered the Americas as a single migration wave from Siberia no earlier than 23 thousand years ago (ka) and after no more than an 8000-year isolation period in Beringia. After their arrival to the Americas, ancestral Native Americans diversified into two basal genetic branches around 13 ka, one that is now dispersed across North and South America and the other restricted to North America. Subsequent gene flow resulted in some Native Americans sharing ancestry with present-day East Asians (including Siberians) and, more distantly, Australo-Melanesians. Putative “Paleoamerican” relict populations, including the historical Mexican Pericúes and South American Fuego-Patagonians, are not directly related to modern Australo-Melanesians as suggested by the Paleoamerican Model.


European Journal of Human Genetics | 2007

A counter-clockwise northern route of the Y-chromosome haplogroup N from Southeast Asia towards Europe

Siiri Rootsi; Marian Baldovic; Manfred Kayser; Ildus Kutuev; R. I. Khusainova; Marina Bermisheva; Marina Gubina; Sardana A. Fedorova; Anne-Mai Ilumäe; Elza Khusnutdinova; M. I. Voevoda; Ludmila P. Osipova; Mark Stoneking; Alice A. Lin; Vladimír Ferák; Jüri Parik; Toomas Kivisild; Peter A. Underhill; Richard Villems

A large part of Y chromosome lineages in East European and East Asian human populations belong to haplogroup (hg) NO, which is composed of two sister clades N-M231 and O-M175. The O-clade is relatively old (around 30 thousand years (ky)) and encompasses the vast majority of east and Southeast Asian male lineages, as well as significant proportion of those in Oceanian males. On the other hand, our detailed analysis of hg N suggests that its high frequency in east Europe is due to its more recent expansion westward on a counter-clock northern route from inner Asia/southern Siberia, approximately 12–14 ky ago. The widespread presence of hg N in Siberia, together with its absence in Native Americans, implies its spread happened after the founder event for the Americas. The most frequent subclade N3, arose probably in the region of present day China, and subsequently experienced serial bottlenecks in Siberia and secondary expansions in eastern Europe. Another branch, N2, forms two distinctive subclusters of STR haplotypes, Asian (N2-A) and European (N2-E), the latter now mostly distributed in Finno-Ugric and related populations. These phylogeographic patterns provide evidence consistent with male-mediated counter-clockwise late Pleistocene–Holocene migratory trajectories toward Northwestern Europe from an ancestral East Asian source of Paleolithic heritage.


Human Genomics | 2005

Large-scale SNP analysis reveals clustered and continuous patterns of human genetic variation

Mark D. Shriver; Rui Mei; Esteban J. Parra; Vibhor Sonpar; Indrani Halder; Sarah A. Tishkoff; Theodore G. Schurr; Sergev I. Zhadanov; Ludmila P. Osipova; Tom D. Brutsaert; Jonathan S. Friedlaender; Lynn B. Jorde; W. Scott Watkins; Michael J. Bamshad; Gerardo Gutiérrez; Halina Loi; Hajime Matsuzaki; Rick A. Kittles; George Argyropoulos; Jose R. Fernandez; Joshua M. Akey; Keith W. Jones

Understanding the distribution of human genetic variation is an important foundation for research into the genetics of common diseases. Some of the alleles that modify common disease risk are themselves likely to be common and, thus, amenable to identification using gene-association methods. A problem with this approach is that the large sample sizes required for sufficient statistical power to detect alleles with moderate effect make gene-association studies susceptible to false-positive findings as the result of population stratification [1, 2]. Such type I errors can be eliminated by using either family-based association tests or methods that sufficiently adjust for population stratification [3–5]. These methods require the availability of genetic markers that can detect and, thus, control for sources of genetic stratification among populations. In an effort to investigate population stratification and identify appropriate marker panels, we have analysed 11,555 single nucleotide polymorphisms in 203 individuals from 12 diverse human populations. Individuals in each population cluster to the exclusion of individuals from other populations using two clustering methods. Higher-order branching and clustering of the populations are consistent with the geographic origins of populations and with previously published genetic analyses. These data provide a valuable resource for the definition of marker panels to detect and control for population stratification in population-based gene identification studies. Using three US resident populations (European-American, African-American and Puerto Rican), we demonstrate how such studies can proceed, quantifying proportional ancestry levels and detecting significant admixture structure in each of these populations.


Human Biology | 2002

High Levels of Y-Chromosome Differentiation among Native Siberian Populations and the Genetic Signature of a Boreal Hunter-Gatherer Way of Life

Tatiana M. Karafet; Ludmila P. Osipova; Marina Gubina; Olga L. Posukh; Stephen L. Zegura; Michael F. Hammer

We examined genetic variation on the nonrecombining portion of the Y chromosome (NRY) to investigate the paternal population structure of indigenous Siberian groups and to reconstruct the historical events leading to the peopling of Siberia. A set of 62 biallelic markers on the NRY were genotyped in 1432 males representing 18 Siberian populations, as well as nine populations from Central and East Asia and one from European Russia. A subset of these markers defines the 18 major NRY haplogroups (A-R) recently described by the Y Chromosome Consortium (YCC 2002). While only four of these 18 major NRY haplogroups accounted for ~ 95% of Siberian Y-chromosome variation, native Siberian populations differed greatly in their haplogroup composition and exhibited the highest F ST value for any region of the world. When we divided our Siberian sample into four geographic regions versus five major linguistic groupings, analyses of molecular variance (AMOVA) indicated higher F ST and F CT values for linguistic groups than for geographic groups. Mantel tests also supported the existence of NRY genetic patterns that were correlated with language, indicating that language affiliation might be a better predictor of the genetic affinity among Siberians than their present geographic position. The combined results, including those from a nested cladistic analysis, underscored the important role of directed dispersals, range expansions, and long-distance colonizations bound by common ethnic and linguistic affiliation in shaping the genetic landscape of Siberia. The Siberian pattern of reduced haplogroup diversity within populations combined with high levels of differentiation among populations may be a general feature characteristic of indigenous groups that have small effective population sizes and that have been isolated for long periods of time.


Genome Research | 2015

A recent bottleneck of Y chromosome diversity coincides with a global change in culture

Monika Karmin; Lauri Saag; Mário Vicente; Melissa A. Wilson Sayres; Mari Järve; Ulvi Gerst Talas; Siiri Rootsi; Anne-Mai Ilumäe; Reedik Mägi; Mario Mitt; Luca Pagani; Tarmo Puurand; Zuzana Faltyskova; Florian Clemente; Alexia Cardona; Ene Metspalu; Hovhannes Sahakyan; Bayazit Yunusbayev; Georgi Hudjashov; Michael DeGiorgio; Eva-Liis Loogväli; Christina A. Eichstaedt; Mikk Eelmets; Gyaneshwer Chaubey; Kristiina Tambets; S. S. Litvinov; Maru Mormina; Yali Xue; Qasim Ayub; Grigor Zoraqi

It is commonly thought that human genetic diversity in non-African populations was shaped primarily by an out-of-Africa dispersal 50-100 thousand yr ago (kya). Here, we present a study of 456 geographically diverse high-coverage Y chromosome sequences, including 299 newly reported samples. Applying ancient DNA calibration, we date the Y-chromosomal most recent common ancestor (MRCA) in Africa at 254 (95% CI 192-307) kya and detect a cluster of major non-African founder haplogroups in a narrow time interval at 47-52 kya, consistent with a rapid initial colonization model of Eurasia and Oceania after the out-of-Africa bottleneck. In contrast to demographic reconstructions based on mtDNA, we infer a second strong bottleneck in Y-chromosome lineages dating to the last 10 ky. We hypothesize that this bottleneck is caused by cultural changes affecting variance of reproductive success among males.


American Journal of Physical Anthropology | 1997

Y Chromosome Markers and Trans-Bering Strait Dispersals

Tatiana M. Karafet; Stephen L. Zegura; Jennifer Vuturo-Brady; Olga L. Posukh; Ludmila P. Osipova; Victor Wiebe; Francine Romero; Jeffrey C. Long; Shinji Harihara; Feng Jin; Bumbein Dashnyam; Tudevdagva Gerelsaikhan; Keiichi Omoto; Michael F. Hammer

Five polymorphisms involving two paternally inherited loci were surveyed in 38 world populations (n = 1,631) to investigate the origins of Native Americans. One of the six Y chromosome combination haplotypes (1T) was found at relatively high frequencies (17.8-75.0%) in nine Native American populations (n = 206) representing the three major linguistic divisions in the New World. Overall, these data do not support the Greenberg et al. (1986) tripartite model for the early peopling of the Americas. The 1T haplotype was also discovered at a low frequency in Siberian Eskimos (3/22), Chukchi (1/6), and Evens (1/65) but was absent from 17 other Asian populations (n = 987). The perplexing presence of the 1T haplotype in northeastern Siberia may be due to back-migration from the New World to Asia.


Nature | 2016

Genomic analyses inform on migration events during the peopling of Eurasia

Luca Pagani; Daniel John Lawson; Evelyn Jagoda; Alexander Mörseburg; Anders Eriksson; Mario Mitt; Florian Clemente; Georgi Hudjashov; Michael DeGiorgio; Lauri Saag; Jeffrey D. Wall; Alexia Cardona; Reedik Mägi; Melissa A. Wilson Sayres; Sarah Kaewert; Charlotte E. Inchley; Christiana L. Scheib; Mari Järve; Monika Karmin; Guy S. Jacobs; Tiago Antao; Florin Mircea Iliescu; Alena Kushniarevich; Qasim Ayub; Chris Tyler-Smith; Yali Xue; Bayazit Yunusbayev; Kristiina Tambets; Chandana Basu Mallick; Lehti Saag

High-coverage whole-genome sequence studies have so far focused on a limited number of geographically restricted populations, or been targeted at specific diseases, such as cancer. Nevertheless, the availability of high-resolution genomic data has led to the development of new methodologies for inferring population history and refuelled the debate on the mutation rate in humans. Here we present the Estonian Biocentre Human Genome Diversity Panel (EGDP), a dataset of 483 high-coverage human genomes from 148 populations worldwide, including 379 new genomes from 125 populations, which we group into diversity and selection sets. We analyse this dataset to refine estimates of continent-wide patterns of heterozygosity, long- and short-distance gene flow, archaic admixture, and changes in effective population size through time as well as for signals of positive or balancing selection. We find a genetic signature in present-day Papuans that suggests that at least 2% of their genome originates from an early and largely extinct expansion of anatomically modern humans (AMHs) out of Africa. Together with evidence from the western Asian fossil record, and admixture between AMHs and Neanderthals predating the main Eurasian expansion, our results contribute to the mounting evidence for the presence of AMHs out of Africa earlier than 75,000 years ago.

Collaboration


Dive into the Ludmila P. Osipova's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marina Gubina

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Matthew C. Dulik

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elza Khusnutdinova

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

M. I. Voevoda

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Olga L. Posukh

Novosibirsk State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge