Ludovic Pelosi
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ludovic Pelosi.
Genetics | 2006
Ludovic Pelosi; Lauriane Kuhn; Dorian Guetta; Jérôme Garin; Johannes Geiselmann; Richard E. Lenski; Dominique Schneider
Twelve populations of Escherichia coli evolved in and adapted to a glucose-limited environment from a common ancestor. We used two-dimensional protein electrophoresis to compare two evolved clones, isolated from independently derived populations after 20,000 generations. Exceptional parallelism was detected. We compared the observed changes in protein expression profiles with previously characterized global transcription profiles of the same clones; this is the first time such a comparison has been made in an evolutionary context where these changes are often quite subtle. The two methodologies exhibited some remarkable similarities that highlighted two different levels of parallel regulatory changes that were beneficial during the evolution experiment. First, at the higher level, both methods revealed extensive parallel changes in the same global regulatory network, reflecting the involvement of beneficial mutations in genes that control the ppGpp regulon. Second, both methods detected expression changes of identical gene sets that reflected parallel changes at a lower level of gene regulation. The protein profiles led to the discovery of beneficial mutations affecting the malT gene, with strong genetic parallelism across independently evolved populations. Functional and evolutionary analyses of these mutations revealed parallel phenotypic decreases in the maltose regulon expression and a high level of polymorphism at this locus in the evolved populations.
Journal of Biological Chemistry | 2002
Maria Hrmova; Tomoya Imai; Simon J. Rutten; Jon K. Fairweather; Ludovic Pelosi; Vincent Bulone; Hugues Driguez; Geoffrey B. Fincher
Barley (1,3)-β-d-glucan endohydrolases (EC 3.2.1.39), inactivated by site-directed mutagenesis of their catalytic nucleophiles, show autocondensation glucosynthetic activity with α-laminaribiosyl fluoride and heterocondensation glycosynthetic activity with α-laminaribiosyl fluoride and 4′-nitrophenyl β-d-glucopyranoside. The native enzyme is a retaining endohydrolase of the family 17 group and catalyzes glycosyl transfer reactions at high substrate concentrations. Catalytic efficiencies (k cat K m −1) of mutants E231G, E231S, and E231A as glycosynthases are 28.9, 0.9, and 0.5 × 10−4 m −1 s−1, respectively. Glycosynthase reactions appear to be processive and proceed with pH optima of 6–8 and yields of up to 75%. Insoluble products formed during the glycosynthase reaction appear as lamellar, hexagonal crystals when observed by electron microscopy. Methylation, NMR, and matrix-assisted laser desorption ionization time-of-flight analyses show that the reaction products are linear (1,3)-β-d-glucans with a degree of polymerization of 30–34, whereas electron and x-ray diffraction patterns indicate that these (1,3)-β-d-glucan chains adopt a parallel, triple helical conformation. The (1,3)-β-d-glucan triple helices are orientated perpendicularly to the plane of the lamellar crystals. The barley (1,3)-β-d-glucan glycosynthases have considerable potential for tailored and high efficiency synthesis of (1,3)-β-d-linked oligo- and polysaccharides, some of which could have immunomodulating activity, or for the coupling of (1,3)-β-d-linked glucosyl residues onto other oligosaccharides or glycoproteins.
Analytical Chemistry | 2010
Martial Rey; Hynek Mrázek; Petr Pompach; Petr Novák; Ludovic Pelosi; Gérard Brandolin; Eric Forest; Vladimír Havlíček; Petr Man
Detergents are frequently used for protein isolation and solubilization. Their presence is crucial in membrane protein protocols or in lipid raft proteomics. However, they are usually poorly compatible with mass spectrometry. Several different sample preparation protocols are routinely used, but they are either laborious or suffer from sample losses. Here, we describe our alternative method for nonionic detergent removal. It is based on selective detergent extraction after capture of the sample on a reversed phase cartridge. The extraction is performed by chlorinated solvents and works well for polyoxyethylene based nonionic detergents, but also for polymers like polyethylene and propylene glycol. Detergent removal can be also carried out on the protein level but a special care must be taken with hydrophobic proteins. In such cases, it is preferable to perform detergent removal after proteolysis which digests the protein to peptides and reduces the hydrophobicity. The method can easily be automated and is compatible with hydrogen/deuterium exchange coupled to mass spectrometry.
Rapid Communications in Mass Spectrometry | 2009
Martial Rey; Petr Man; Gérard Brandolin; Eric Forest; Ludovic Pelosi
Hydrogen/deuterium (H/D) exchange coupled to mass spectrometry is nowadays routinely used to probe protein interactions or conformational changes. The method has many advantages, e.g. very low sample consumption, but offers limited spatial resolution. One way to higher resolution leads through the use of different proteases or their combinations. In the present work we describe recombinant production, purification and use of aspartic protease zymogen from Rhizopus chimensis, protease type XVIII (EC 3.4.23.6), commonly referred to as rhizopuspepsinogen (Rpg). The enzyme was expressed in Escherichia coli, refolded and purified to homogeneity. A typical yield was approximately 100 mg of pure enzyme per 1 L of original bacterial culture. The kinetics of protease activation, i.e. removal of the propeptide achieved by autolysis in an acidic environment, was followed by mass spectrometry. The digestion efficiency was tested for the protease in solution as well as for the immobilized enzyme. Apomyoglobin was successfully digested under all conditions tested and the protease displayed very low or no autodigestion. The results outperformed those obtained with commercial protease where the digestion of apomyoglobin was incomplete and accompanied by many contaminating peptides. Taken together, the recombinant protease type XVIII can be considered as a new and highly efficient tool for H/D exchange followed by mass spectrometry.
Journal of Bacteriology | 2009
Nadège Philippe; Ludovic Pelosi; Richard E. Lenski; Dominique Schneider
Peptidoglycan is the major component of the bacterial cell wall and is involved in osmotic protection and in determining cell shape. Cell shape potentially influences many processes, including nutrient uptake as well as cell survival and growth. Peptidoglycan is a dynamic structure that changes during the growth cycle. Penicillin-binding proteins (PBPs) catalyze the final stages of peptidoglycan synthesis. Although PBPs are biochemically and physiologically well characterized, their broader effects, especially their effects on organismal fitness, are not well understood. In a long-term experiment, 12 populations of Escherichia coli having a common ancestor were allowed to evolve for more than 40,000 generations in a defined environment. We previously identified mutations in the pbpA operon in one-half of these populations; this operon encodes PBP2 and RodA proteins that are involved in cell wall elongation. In this study, we characterized the effects of two of these mutations on competitive fitness and other phenotypes. By constructing and performing competition experiments with strains that are isogenic except for the pbpA alleles, we showed that both mutations that evolved were beneficial in the environment used for the long-term experiment and that these mutations caused parallel phenotypic changes. In particular, they reduced the cellular concentration of PBP2, thereby generating spherical cells with an increased volume. In contrast to their fitness-enhancing effect in the environment where they evolved, both mutations decreased cellular resistance to osmotic stress. Moreover, one mutation reduced fitness during prolonged stationary phase. Therefore, alteration of the PBP2 concentration contributed to physiological trade-offs and ecological specialization during experimental evolution.
Journal of Biological Chemistry | 2010
Martial Rey; Petr Man; Benjamin Clémençon; Véronique Trézéguet; Gérard Brandolin; Eric Forest; Ludovic Pelosi
The mitochondrial adenine nucleotide carrier (Ancp) catalyzes the transport of ADP and ATP across the mitochondrial inner membrane, thus playing an essential role in cellular energy metabolism. During the transport mechanism the carrier switches between two different conformations that can be blocked by two toxins: carboxyatractyloside (CATR) and bongkrekic acid. Therefore, our understanding of the nucleotide transport mechanism can be improved by analyzing structural differences of the individual inhibited states. We have solved the three-dimensional structure of bovine carrier isoform 1 (bAnc1p) in a complex with CATR, but the structure of the carrier-bongkrekic acid complex, and thus, the detailed mechanism of transport remains unknown. Improvements in sample processing in the hydrogen/deuterium exchange technique coupled to mass spectrometry (HDX-MS) have allowed us to gain novel insights into the conformational changes undergone by bAnc1p. This paper describes the first study of bAnc1p using HDX-MS. Results obtained with the CATR-bAnc1p complex were fully in agreement with published results, thus, validating our approach. On the other hand, the HDX kinetics of the two complexes displays marked differences. The bongkrekic acid-bAnc1p complex exhibits greater accessibility to the solvent on the matrix side, whereas the CATR-bAnc1p complex is more accessible on the intermembrane side. These results are discussed with respect to the structural and biochemical data available on Ancp.
Molecular Microbiology | 2006
Jamel Bouzenzana; Ludovic Pelosi; Anne Briolay; Jérôme Briolay; Vincent Bulone
(1→3)‐β‐d‐Glucans are major components of the cell walls of Oomycetes and as such they play an essential role in the morphogenesis and growth of these microorganisms. Despite the biological importance of (1→3)‐β‐d‐glucans, their mechanisms of biosynthesis are poorly understood. Previous studies on (1→3)‐β‐d‐glucan synthases from Saprolegnia monoica have shown that three protein bands of an apparent molecular weight of 34, 48 and 50 kDa co‐purify with enzyme activity. However, none of the corresponding proteins have been identified. Here we have identified, purified, sequenced and characterized a protein from the 34 kDa band and clearly shown that it has all the biochemical properties of proteins from the annexin family. In addition, we have unequivocally demonstrated that the purified protein is an activator of (1→3)‐β‐d‐glucan synthase. This represents a new type of function for proteins belonging to the annexin family. Two other proteins from the 48 and 50 kDa bands were identified as ATP synthase subunits, which most likely arise from contaminations by mitochondria during membrane preparation. The results, which are discussed in relation with the possible regulation mechanisms of (1→3)‐β‐d‐glucan synthases, represent a first step towards a better understanding of cell wall polysaccharide biosynthesis in Oomycetes.
Journal of Biological Chemistry | 2012
Priscila Peña-Diaz; Ludovic Pelosi; Charles Ebikeme; Claudia Colasante; Fei Gao; Frédéric Bringaud; Frank Voncken
Background: TbMCP5 was predicted to function as a mitochondrial ADP/ATP carrier. Results: TbMCP5 functionally complemented ANC-deficient S. cerevisae, has biochemical properties comparable with those of ScAnc2p, and is essential for mitochondrial ADP/ATP exchange in T. brucei. Conclusion: TbMCP5 is a conserved and essential mitochondrial ADP/ATP carrier in T. brucei. Significance: TbMCP5 is the first functionally characterized mitochondrial ADP/ATP carrier from a kinetoplastid parasite. Trypanosoma brucei is a kinetoplastid parasite of medical and veterinary importance. Its digenetic life cycle alternates between the bloodstream form in the mammalian host and the procyclic form (PCF) in the bloodsucking insect vector, the tsetse fly. PCF trypanosomes rely in the glucose-depleted environment of the insect vector primarily on the mitochondrial oxidative phosphorylation of proline for their cellular ATP provision. We previously identified two T. brucei mitochondrial carrier family proteins, TbMCP5 and TbMCP15, with significant sequence similarity to functionally characterized ADP/ATP carriers from other eukaryotes. Comprehensive sequence analysis confirmed that TbMCP5 contains canonical ADP/ATP carrier sequence features, whereas they are not conserved in TbMCP15. Heterologous expression in the ANC-deficient yeast strain JL1Δ2Δ3u− revealed that only TbMCP5 was able to restore its growth on the non-fermentable carbon source lactate. Transport studies in yeast mitochondria showed that TbMCP5 has biochemical properties and ADP/ATP exchange kinetics similar to those of Anc2p, the prototypical ADP/ATP carrier of S. cerevisiae. Immunofluorescence microscopy and Western blot analysis confirmed that TbMCP5 is exclusively mitochondrial and is differentially expressed with 4.5-fold more TbMCP5 in the procyclic form of the parasite. Silencing of TbMCP5 expression in PCF T. brucei revealed that this ADP/ATP carrier is essential for parasite growth, particularly when depending on proline for energy generation. Moreover, ADP/ATP exchange in isolated T. brucei mitochondria was eliminated upon TbMCP5 depletion. These results confirmed that TbMCP5 functions as the main ADP/ATP carrier in the trypanosome mitochondrion. The important role of TbMCP5 in the T. brucei energy metabolism is further discussed.
Biochemistry | 2012
Martial Rey; Eric Forest; Ludovic Pelosi
The mitochondrial ADP/ATP carrier catalyzes the transport of ADP and ATP across the mitochondrial inner membrane by switching between two different conformations. They can be blocked by two inhibitors: carboxyatractyloside (CATR) and bongkrekic acid (BA). Our understanding of the ADP/ATP transport process is largely based on analysis of structural differences between the individual inhibited states. The X-ray crystallographic three-dimensional structure of bovine ADP/ATP carrier isoform 1 (bAnc1p) complexed with CATR was determined, but the structure of the BA-carrier complex remains unknown. We recently investigated the conformational dynamics of bAnc1p in detergent solution using hydrogen/deuterium exchange and mass spectrometry (HDX-MS). This study shed light on some features of ADP/ATP translocation, but the mechanism itself and the organization of bAnc1p in the membrane required further investigation. This paper describes the first study of bAnc1p in the mitochondria on the whole-protein scale using HDX-MS. Membrane-embedded bAnc1p was deuterated and purified under HDX-MS-compatible conditions. Our results for the carrier in the mitochondrial inner membrane differed from those published for the carrier in a detergent solution. These differences were mainly in the upper half of the cavity that globally showed a limited H/D exchange whatever the complex analyzed and at the level of the matrix loops that were less accessible to the solvent in the BA-carrier complex than in the CATR-carrier complex. They are discussed with respect to published data for bAnc1p and have provided new insights into the conformation of the matrix loops of the bovine carrier in complex with BA in mitochondria.
Journal of Biological Chemistry | 2011
Benjamin Clémençon; Martial Rey; Véronique Trézéguet; Eric Forest; Ludovic Pelosi
Background: ADP/ATP carrier (Ancp) is a model of mitochondrial carriers that mediates the transport of metabolic intermediates. Results: Yeast Ancp exhibits inhibitor-dependent solvent accessibility. Ancp signature sequence is involved in the ADP/ATP binding step. Conclusion: Ancp has a highly dynamic structure, with different protein parts acting in synergy. Significance: Learning the functional dynamics of Ancp is crucial for understanding ADP/ATP transport mechanism. The mitochondrial ADP/ATP carrier, or Ancp, is a member of the mitochondrial carrier family responsible for exchanging ADP and ATP across the mitochondrial inner membrane. ADP/ATP transport involves Ancp switching between two conformational states. These can be analyzed using specific inhibitors, carboxyatractyloside (CATR) and bongkrekic acid (BA). The high resolution three-dimensional structure of bovine Anc1p (bAnc1p), as a CATR-carrier complex, has been solved. However, because the structure of the BA-carrier complex has not yet been determined, the detailed mechanism of transport remains unknown. Recently, sample processing for hydrogen/deuterium exchange experiments coupled to mass spectrometry was improved, providing novel insights into bAnc1p conformational transitions due to inhibitor binding. In this work we performed both hydrogen/deuterium exchange-mass spectrometry experiments and genetic manipulations. Because these are very difficult to apply with bovine Anc1p, we used Saccharomyces cerevisiae Anc isoform 2 (ScAnc2p). Significant differences in solvent accessibility were observed throughout the amino acid sequence for ScAnc2p complexed to either CATR or BA. Interestingly, in detergent solution, the conformational dynamics of ScAnc2p were dissimilar to those of bAnc1p, in particular for the upper half of the cavity, toward the intermembrane space, and the m2 loop, which is thought to be easily accessible to the solvent from the matrix in bAnc1p. Our study then focused on the methionyl residues of the Ancp signature sequence, RRRMMM. All our results indicate that the methionine cluster is involved in the ADP/ATP transport mechanism and confirm that the Ancp cavity is a highly dynamic structure.