Ludovic Tailleux
Pasteur Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ludovic Tailleux.
Journal of Experimental Medicine | 2003
Ludovic Tailleux; Olivier Schwartz; Jean-Louis Herrmann; Elisabeth Pivert; Mary Jackson; Ali Amara; Luc Legres; Donatus Dreher; Laurent P. Nicod; Jean Claude Gluckman; Philippe H. Lagrange; Brigitte Gicquel; Olivier Neyrolles
Early interactions between lung dendritic cells (LDCs) and Mycobacterium tuberculosis, the etiological agent of tuberculosis, are thought to be critical for mounting a protective anti-mycobacterial immune response and for determining the outcome of infection. However, these interactions are poorly understood, at least at the molecular level. Here we show that M. tuberculosis enters human monocyte-derived DCs after binding to the recently identified lectin DC-specific intercellular adhesion molecule-3 grabbing nonintegrin (DC-SIGN). By contrast, complement receptor (CR)3 and mannose receptor (MR), which are the main M. tuberculosis receptors on macrophages (Mφs), appeared to play a minor role, if any, in mycobacterial binding to DCs. The mycobacteria-specific lipoglycan lipoarabinomannan (LAM) was identified as a key ligand of DC-SIGN. Freshly isolated human LDCs were found to express DC-SIGN, and M. tuberculosis–derived material was detected in CD14−HLA-DR+DC-SIGN+ cells in lymph nodes (LNs) from patients with tuberculosis. Thus, as for human immunodeficiency virus (HIV), which is captured by the same receptor, DC-SIGN–mediated entry of M. tuberculosis in DCs in vivo is likely to influence bacterial persistence and host immunity.
PLOS ONE | 2006
Olivier Neyrolles; Rogelio Hernández-Pando; Paul Fornès; Ludovic Tailleux; Jorge Barrios Payán; Elisabeth Pivert; Yann Bordat; Diane Aguilar; Marie-Christine Prévost; Caroline Petit; Brigitte Gicquel
Background Mycobacterium tuberculosis, the etiological agent of tuberculosis (TB), has the ability to persist in its human host for exceptionally long periods of time. However, little is known about the location of the bacilli in latently infected individuals. Long-term mycobacterial persistence in the lungs has been reported, but this may not sufficiently account for strictly extra-pulmonary TB, which represents 10–15% of the reactivation cases. Methodology/Principal Findings We applied in situ and conventional PCR to sections of adipose tissue samples of various anatomical origins from 19 individuals from Mexico and 20 from France who had died from causes other than TB. M. tuberculosis DNA could be detected by either or both techniques in fat tissue surrounding the kidneys, the stomach, the lymph nodes, the heart and the skin in 9/57 Mexican samples (6/19 individuals), and in 8/26 French samples (6/20 individuals). In addition, mycobacteria could be immuno-detected in perinodal adipose tissue of 1 out of 3 biopsy samples from individuals with active TB. In vitro, using a combination of adipose cell models, including the widely used murine adipose cell line 3T3-L1, as well as primary human adipocytes, we show that after binding to scavenger receptors, M. tuberculosis can enter within adipocytes, where it accumulates intracytoplasmic lipid inclusions and survives in a non-replicating state that is insensitive to the major anti-mycobacterial drug isoniazid. Conclusions/Significance Given the abundance and the wide distribution of the adipose tissue throughout the body, our results suggest that this tissue, among others, might constitute a vast reservoir where the tubercle bacillus could persist for long periods of time, and avoid both killing by antimicrobials and recognition by the host immune system. In addition, M. tuberculosis-infected adipocytes might provide a new model to investigate dormancy and to evaluate new drugs for the treatment of persistent infection.
PLOS Medicine | 2006
Luis B. Barreiro; Olivier Neyrolles; C. Babb; Ludovic Tailleux; Hélène Quach; Ken McElreavey; Paul D. van Helden; Eileen G. Hoal; Brigitte Gicquel; Lluis Quintana-Murci
Background Tuberculosis, which is caused by Mycobacterium tuberculosis, remains one of the leading causes of mortality worldwide. The C-type lectin DC-SIGN is known to be the major M. tuberculosis receptor on human dendritic cells. We reasoned that if DC-SIGN interacts with M. tuberculosis, as well as with other pathogens, variation in this gene might have a broad range of influence in the pathogenesis of a number of infectious diseases, including tuberculosis. Methods and Findings We tested whether polymorphisms in CD209, the gene encoding DC-SIGN, are associated with susceptibility to tuberculosis through sequencing and genotyping analyses in a South African cohort. After exclusion of significant population stratification in our cohort, we observed an association between two CD209 promoter variants (−871G and −336A) and decreased risk of developing tuberculosis. By looking at the geographical distribution of these variants, we observed that their allelic combination is mainly confined to Eurasian populations. Conclusions Our observations suggest that the two −871G and −336A variants confer protection against tuberculosis. In addition, the geographic distribution of these two alleles, together with their phylogenetic status, suggest that they may have increased in frequency in non-African populations as a result of host genetic adaptation to a longer history of exposure to tuberculosis. Further characterization of the biological consequences of DC-SIGN variation in tuberculosis will be crucial to better appreciate the role of this lectin in interactions between the host immune system and the tubercle bacillus as well as other pathogens.
PLOS ONE | 2008
Ludovic Tailleux; Simon J. Waddell; Mattia Pelizzola; Alessandra Mortellaro; Michael Withers; Antoine Tanne; Paola Ricciardi Castagnoli; Brigitte Gicquel; Neil G. Stoker; Philip D. Butcher; Maria Foti; Olivier Neyrolles
Background Transcriptional profiling using microarrays provides a unique opportunity to decipher host pathogen cross-talk on the global level. Here, for the first time, we have been able to investigate gene expression changes in both Mycobacterium tuberculosis, a major human pathogen, and its human host cells, macrophages and dendritic cells. Methodology/Principal Findings In addition to common responses, we could identify eukaryotic and microbial transcriptional signatures that are specific to the cell type involved in the infection process. In particular M. tuberculosis shows a marked stress response when inside dendritic cells, which is in accordance with the low permissivity of these specialized phagocytes to the tubercle bacillus and to other pathogens. In contrast, the mycobacterial transcriptome inside macrophages reflects that of replicating bacteria. On the host cell side, differential responses to infection in macrophages and dendritic cells were identified in genes involved in oxidative stress, intracellular vesicle trafficking and phagosome acidification. Conclusions/Significance This study provides the proof of principle that probing the host and the microbe transcriptomes simultaneously is a valuable means to accessing unique information on host pathogen interactions. Our results also underline the extraordinary plasticity of host cell and pathogen responses to infection, and provide a solid framework to further understand the complex mechanisms involved in immunity to M. tuberculosis and in mycobacterial adaptation to different intracellular environments.
Cell Host & Microbe | 2011
Hélène Botella; Pascale Peyron; Florence Levillain; Renaud Poincloux; Yannick Poquet; Irène Brandli; Chuan Wang; Ludovic Tailleux; Sylvain Tilleul; Guillaume M. Charrière; Simon J. Waddell; Maria Foti; Geanncarlo Lugo-Villarino; Qian qian Gao; Isabelle Maridonneau-Parini; Philip D. Butcher; Paola Ricciardi Castagnoli; Brigitte Gicquel; Chantal de Chastellier; Olivier Neyrolles
Summary Mycobacterium tuberculosis thrives within macrophages by residing in phagosomes and preventing them from maturing and fusing with lysosomes. A parallel transcriptional survey of intracellular mycobacteria and their host macrophages revealed signatures of heavy metal poisoning. In particular, mycobacterial genes encoding heavy metal efflux P-type ATPases CtpC, CtpG, and CtpV, and host cell metallothioneins and zinc exporter ZnT1, were induced during infection. Consistent with this pattern of gene modulation, we observed a burst of free zinc inside macrophages, and intraphagosomal zinc accumulation within a few hours postinfection. Zinc exposure led to rapid CtpC induction, and ctpC deficiency caused zinc retention within the mycobacterial cytoplasm, leading to impaired intracellular growth of the bacilli. Thus, the use of P1-type ATPases represents a M. tuberculosis strategy to neutralize the toxic effects of zinc in macrophages. We propose that heavy metal toxicity and its counteraction might represent yet another chapter in the host-microbe arms race.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Luis B. Barreiro; Ludovic Tailleux; Athma A. Pai; Brigitte Gicquel; John C. Marioni; Yoav Gilad
Tuberculosis (TB) is a major public health problem. One-third of the worlds population is estimated to be infected with Mycobacterium tuberculosis (MTB), the etiological agent causing TB, and active disease kills nearly 2 million individuals worldwide every year. Several lines of evidence indicate that interindividual variation in susceptibility to TB has a heritable component, yet we still know little about the underlying genetic architecture. To address this, we performed a genome-wide mapping study of loci that are associated with functional variation in immune response to MTB. Specifically, we characterized transcript and protein expression levels and mapped expression quantitative trait loci (eQTL) in primary dendritic cells (DCs) from 65 individuals, before and after infection with MTB. We found 198 response eQTL, namely loci that were associated with variation in gene expression levels in either untreated or MTB-infected DCs, but not both. These response eQTL are associated with natural regulatory variation that likely affects (directly or indirectly) host interaction with MTB. Indeed, when we integrated our data with results from a genome-wide association study (GWAS) for pulmonary TB, we found that the response eQTL were more likely to be genetically associated with the disease. We thus identified a number of candidate loci, including the MAPK phosphatase DUSP14 in particular, that are promising susceptibility genes to pulmonary TB.
PLOS Medicine | 2005
Ludovic Tailleux; Nhan Pham-Thi; Anne Bergeron-Lafaurie; Jean-Louis Herrmann; Patricia Charles; Olivier Schwartz; Pierre Scheinmann; Philippe H. Lagrange; Jacques de Blic; Abdellatif Tazi; Brigitte Gicquel; Olivier Neyrolles
Background Interplays between Mycobacterium tuberculosis, the etiological agent of tuberculosis (TB) in human and host professional phagocytes, namely macrophages (Mφs) and dendritic cells (DCs), are central to immune protection against TB and to TB pathogenesis. We and others have recently shown that the C-type lectin dendritic cell–specific intercellular adhesion molecule-3 grabbing nonintegrin (DC-SIGN; CD209) mediates important interactions between mycobacteria and human monocyte-derived DCs (MoDCs) in vitro. Methods and Findings In order to explore the possible role of DC-SIGN in M. tuberculosis infection in vivo, we have analysed DC-SIGN expression in broncho-alveolar lavage (BAL) cells from patients with TB (n = 40) or with other non-mycobacterial lung pathologies, namely asthma (n = 14) and sarcoidosis (n = 11), as well as from control individuals (n = 9). We show that in patients with TB, up to 70% of alveolar Mφs express DC-SIGN. By contrast, the lectin is barely detected in alveolar Mφs from all other individuals. Flow cytometry, RT-PCR, and enzyme-linked immunosorbent assay analyses of BAL-derived fluids and cells indicated that M. tuberculosis infection induces DC-SIGN expression in alveolar Mφs by a mechanism that is independent of Toll-like receptor-4, interleukin (IL)-4, and IL-13. This mechanism most likely relies on the secretion of soluble host and/or mycobacterial factors that have yet to be identified, as both infected and uninfected bystander Mφs were found to express DC-SIGN in the presence of M. tuberculosis. Immunohistochemical examination of lung biopsy samples from patients with TB showed that the bacilli concentrate in pulmonary regions enriched in DC-SIGN-expressing alveolar Mφs in vivo. Ex vivo binding and inhibition of binding experiments further revealed that DC-SIGN–expressing alveolar Mφs constitute preferential target cells for M. tuberculosis, as compared to their DC-SIGN− counterparts. In contrast with what has been reported previously in MoDCs in vitro, ex vivo DC-SIGN ligation by mycobacterial products failed to induce IL-10 secretion by alveolar Mφs, and IL-10 was not detected in BALs from patients with TB. Conclusion Altogether, our results provide further evidence for an important role of DC-SIGN during TB in humans. DC-SIGN induction in alveolar Mφs may have important consequences on lung colonization by the tubercle bacillus, and on pulmonary inflammatory and immune responses in the infected host.
Journal of Experimental Medicine | 2009
Antoine Tanne; Bo Ma; Frédéric Boudou; Ludovic Tailleux; Hélène Botella; Edgar Badell; Florence Levillain; Maureen E. Taylor; Kurt Drickamer; Jérôme Nigou; Karen M. Dobos; Germain Puzo; Dietmar Vestweber; Martin K. Wild; Marie Marcinko; Peter Sobieszczuk; Lauren Stewart; Daniel Lebus; Brigitte Gicquel; Olivier Neyrolles
The C-type lectin dendritic cell−specific intercellular adhesion molecule-3 grabbing nonintegrin (DC-SIGN) mediates the innate immune recognition of microbial carbohydrates. We investigated the function of this molecule in the host response to pathogens in vivo, by generating mouse lines lacking the DC-SIGN homologues SIGNR1, SIGNR3, and SIGNR5. Resistance to Mycobacterium tuberculosis was impaired only in SIGNR3-deficient animals. SIGNR3 was expressed in lung phagocytes during infection, and interacted with M. tuberculosis bacilli and mycobacterial surface glycoconjugates to induce secretion of critical host defense inflammatory cytokines, including tumor necrosis factor (TNF). SIGNR3 signaling was dependent on an intracellular tyrosine-based motif and the tyrosine kinase Syk. Thus, the mouse DC-SIGN homologue SIGNR3 makes a unique contribution to protection of the host against a pulmonary bacterial pathogen.
Genome Research | 2015
Alain Pacis; Ludovic Tailleux; Alexander M. Morin; John J. Lambourne; Julia L. MacIsaac; Vania Yotova; Anne Dumaine; Anne Danckaert; Francesca Luca; Jean Christophe Grenier; Kasper D. Hansen; Brigitte Gicquel; Miao Yu; Athma A. Pai; Chuan He; Jenny Tung; Tomi Pastinen; Michael S. Kobor; Roger Pique-Regi; Yoav Gilad; Luis B. Barreiro
DNA methylation is an epigenetic mark thought to be robust to environmental perturbations on a short time scale. Here, we challenge that view by demonstrating that the infection of human dendritic cells (DCs) with a live pathogenic bacteria is associated with rapid and active demethylation at thousands of loci, independent of cell division. We performed an integrated analysis of data on genome-wide DNA methylation, histone mark patterns, chromatin accessibility, and gene expression, before and after infection. We found that infection-induced demethylation rarely occurs at promoter regions and instead localizes to distal enhancer elements, including those that regulate the activation of key immune transcription factors. Active demethylation is associated with extensive epigenetic remodeling, including the gain of histone activation marks and increased chromatin accessibility, and is strongly predictive of changes in the expression levels of nearby genes. Collectively, our observations show that active, rapid changes in DNA methylation in enhancers play a previously unappreciated role in regulating the transcriptional response to infection, even in nonproliferating cells.
Trends in Microbiology | 2003
Ludovic Tailleux; Norihiro Maeda; Jérôme Nigou; Brigitte Gicquel; Olivier Neyrolles
Mammals have evolved surface pattern recognition receptors, such as the Toll-like receptors, to initiate defenses against pathogens, including mycobacterium. In turn, microbes have developed strategies to circumvent defenses of their host and establish persistent infections. Mycobacterium tuberculosis, one of the most successful pathogens worldwide, has the ability to parasitize and manipulate phagocytic cells of its human host. A set of recent reports has shed light on exploitation of phagocyte surface lectins by the tubercle bacillus. These findings could lead the way to innovative therapeutic approaches.