Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ludovica Labruna is active.

Publication


Featured researches published by Ludovica Labruna.


The Journal of Neuroscience | 2012

Dissociating the Role of Prefrontal and Premotor Cortices in Controlling Inhibitory Mechanisms during Motor Preparation

Julie Duque; Ludovica Labruna; Sophie Verset; Etienne Olivier; Richard B. Ivry

Top-down control processes are critical to select goal-directed actions in flexible environments. In humans, these processes include two inhibitory mechanisms that operate during response selection: one is involved in solving a competition between different response options, the other ensures that a selected response is initiated in a timely manner. Here, we evaluated the role of dorsal premotor cortex (PMd) and lateral prefrontal cortex (LPF) of healthy subjects in these two forms of inhibition by using an innovative transcranial magnetic stimulation (TMS) protocol combining repetitive TMS (rTMS) over PMd or LPF and a single pulse TMS (sTMS) over primary motor cortex (M1). sTMS over M1 allowed us to assess inhibitory changes in corticospinal excitability, while rTMS was used to produce transient disruption of PMd or LPF. We found that rTMS over LPF reduces inhibition associated with competition resolution, whereas rTMS over PMd decreases inhibition associated with response impulse control. These results emphasize the dissociable contributions of these two frontal regions to inhibitory control during motor preparation. The association of LPF with competition resolution is consistent with the role of this area in relatively abstract aspects of control related to goal maintenance, ensuring that the appropriate response is selected in a variable context. In contrast, the association of PMd with impulse control is consistent with the role of this area in more specific processes related to motor preparation and initiation.


Psychological Science | 2011

A Functional Role for the Motor System in Language Understanding: Evidence from Theta-Burst Transcranial Magnetic Stimulation

Roel M. Willems; Ludovica Labruna; Mark D'Esposito; Richard B. Ivry; Daniel Casasanto

Does language comprehension depend, in part, on neural systems for action? In previous studies, motor areas of the brain were activated when people read or listened to action verbs, but it remains unclear whether such activation is functionally relevant for comprehension. In the experiments reported here, we used off-line theta-burst transcranial magnetic stimulation to investigate whether a causal relationship exists between activity in premotor cortex and action-language understanding. Right-handed participants completed a lexical decision task, in which they read verbs describing manual actions typically performed with the dominant hand (e.g., “to throw,” “to write”) and verbs describing nonmanual actions (e.g., “to earn,” “to wander”). Responses to manual-action verbs (but not to nonmanual-action verbs) were faster after stimulation of the hand area in left premotor cortex than after stimulation of the hand area in right premotor cortex. These results suggest that premotor cortex has a functional role in action-language understanding.


The Journal of Physiology | 2017

Systematic evaluation of the impact of stimulation intensity on neuroplastic after-effects induced by transcranial direct current stimulation.

Asif Jamil; Giorgi Batsikadze; Hsiao-I. Kuo; Ludovica Labruna; Alkomiet Hasan; Walter Paulus; Michael A. Nitsche

Applications of transcranial direct current stimulation to modulate human neuroplasticity have increased in research and clinical settings. However, the need for longer‐lasting effects, combined with marked inter‐individual variability, necessitates a deeper understanding of the relationship between stimulation parameters and physiological effects. We systematically investigated the full DC intensity range (0.5–2.0 mA) for both anodal and cathodal tDCS in a sham‐controlled repeated measures design, monitoring changes in motor‐cortical excitability via transcranial magnetic stimulation up to 2 h after stimulation. For both tDCS polarities, the excitability after‐effects did not linearly correlate with increasing DC intensity; effects of lower intensities (0.5, 1.0 mA) showed equal, if not greater effects in motor‐cortical excitability. Further, while intra‐individual responses showed good reliability, inter‐individual sensitivity to TMS accounted for a modest percentage of the variance in the early after‐effects of 1.0 mA anodal tDCS, which may be of practical relevance for future optimizations.


Trends in Neurosciences | 2017

Physiological Markers of Motor Inhibition during Human Behavior

Julie Duque; Ian Greenhouse; Ludovica Labruna; Richard B. Ivry

Transcranial magnetic stimulation (TMS) studies in humans have shown that many behaviors engage processes that suppress excitability within the corticospinal tract. Inhibition of the motor output pathway has been extensively studied in the context of action stopping, where a planned movement needs to be abruptly aborted. Recent TMS work has also revealed markers of motor inhibition during the preparation of movement. Here, we review the evidence for motor inhibition during action stopping and action preparation, focusing on studies that have used TMS to monitor changes in the excitability of the corticospinal pathway. We discuss how these physiological results have motivated theoretical models of how the brain selects actions, regulates movement initiation and execution, and switches from one state to another.


The Journal of Neuroscience | 2015

Nonspecific Inhibition of the Motor System during Response Preparation

Ian Greenhouse; Ana Sias; Ludovica Labruna; Richard B. Ivry

Motor system excitability is transiently inhibited during the preparation of responses. Previous studies have attributed this inhibition to the operation of two mechanisms, one hypothesized to help resolve competition between alternative response options, and the other to prevent premature response initiation. By this view, inhibition should be restricted to task-relevant muscles. Although this prediction is supported in one previous study (Duque et al., 2010), studies of stopping ongoing actions suggest that some forms of motor inhibition may be widespread (Badry et al., 2009). This motivated us to conduct a series of transcranial magnetic stimulation (TMS) experiments to examine in detail the specificity of preparatory inhibition in humans. Motor-evoked potentials were inhibited in task-irrelevant muscles during response preparation, even when the muscles were contralateral and not homologous to the responding effector. Inhibition was also observed in both choice and simple response task conditions, with and without a preparatory interval. Control experiments ruled out that this inhibition is due to expectancy of TMS or a possible need to cancel the prepared response. These findings suggest that motor inhibition during response preparation broadly influences the motor system and likely reflects a process that occurs whenever a response is selected. We propose a reinterpretation of the functional significance of preparatory inhibition, one by which inhibition reduces noise to enhance signal processing and modulates the gain of a selected response. SIGNIFICANCE STATEMENT Motor preparation entails the recruitment of excitatory and inhibitory neural mechanisms. The current experiments address the specificity of inhibitory mechanisms, asking whether preparatory inhibition affects task-irrelevant muscles. Participants prepared a finger movement to be executed at the end of a short delay period. Transcranial magnetic stimulation over primary motor cortex provided an assay of corticospinal excitability. Consistent with earlier work, the agonist muscle for the forthcoming response was inhibited during the preparatory period. Moreover, this inhibition was evident in task-irrelevant muscles, although the magnitude of inhibition depended on whether the response was fixed or involved a choice. These results implicate a broadly tuned inhibitory mechanism that facilitates response preparation, perhaps by lowering background activity before response initiation.


Brain Stimulation | 2016

Efficacy of Anodal Transcranial Direct Current Stimulation is Related to Sensitivity to Transcranial Magnetic Stimulation

Ludovica Labruna; Asif Jamil; Shane Fresnoza; Giorgi Batsikadze; Min-Fang Kuo; Benjamin Vanderschelden; Richard B. Ivry; Michael A. Nitsche

BACKGROUND Transcranial direct current stimulation (tDCS) has become an important non-invasive brain stimulation tool for basic human brain physiology and cognitive neuroscience, with potential applications in cognitive and motor rehabilitation. To date, tDCS studies have employed a fixed stimulation level, without considering the impact of individual anatomy and physiology on the efficacy of the stimulation. This approach contrasts with the standard procedure for transcranial magnetic stimulation (TMS) where stimulation levels are usually tailored on an individual basis. OBJECTIVE/HYPOTHESIS The present study tests whether the efficacy of tDCS-induced changes in corticospinal excitability varies as a function of individual differences in sensitivity to TMS. METHODS We performed an archival review to examine the relationship between the TMS intensity required to induce 1 mV motor-evoked potentials (MEPs) and the efficacy of (fixed-intensity) tDCS over the primary motor cortex (M1). For the latter, we examined tDCS-induced changes in corticospinal excitability, operationalized by comparing MEPs before and after anodal or cathodal tDCS. For comparison, we performed a similar analysis on data sets in which MEPs had been obtained before and after paired associative stimulation (PAS), a non-invasive brain stimulation technique in which the stimulation intensity is adjusted on an individual basis. RESULTS MEPs were enhanced following anodal tDCS. This effect was larger in participants more sensitive to TMS as compared to those less sensitive to TMS, with sensitivity defined as the TMS intensity required to produce MEPs amplitudes of the size of 1 mV. While MEPs were attenuated following cathodal tDCS, the magnitude of this attenuation was not related to TMS sensitivity nor was there a relationship between TMS sensitivity and responsiveness to PAS. CONCLUSION Accounting for variation in individual sensitivity to non-invasive brain stimulation may enhance the utility of tDCS as a tool for understanding brain-behavior interactions and as a method for clinical interventions.


Neuropsychologia | 2014

Dissociating the influence of response selection and task anticipation on corticospinal suppression during response preparation

Julie Duque; Ludovica Labruna; Christian Cazares; Richard B. Ivry

Motor behavior requires selecting between potential actions. The role of inhibition in response selection has frequently been examined in tasks in which participants are engaged in some advance preparation prior to the presentation of an imperative signal. Under such conditions, inhibition could be related to processes associated with response selection, or to more general inhibitory processes that are engaged in high states of anticipation. In Experiment 1, we manipulated the degree of anticipatory preparation. Participants performed a choice reaction time task that required choosing between a movement of the left or right index finger, and used transcranial magnetic stimulation (TMS) to elicit motor evoked potentials (MEPs) in the left hand agonist. In high anticipation blocks, a non-informative cue (e.g., fixation marker) preceded the imperative; in low anticipation blocks, there was no cue and participants were required to divide their attention between two tasks to further reduce anticipation. MEPs were substantially reduced before the imperative signal in high anticipation blocks. In contrast, in low anticipation blocks, MEPs remained unchanged before the imperative signal but showed a marked suppression right after the onset of the imperative. This effect occurred regardless of whether the imperative had signalled a left or right hand response. After this initial inhibition, left MEPs increased when the left hand was selected and remained suppressed when the right hand was selected. We obtained similar results in Experiment 2 except that the persistent left MEP suppression when the left hand was not selected was attenuated when the alternative response involved a non-homologous effector (right foot). These results indicate that, even in the absence of an anticipatory period, inhibitory mechanisms are engaged during response selection, possibly to prevent the occurrence of premature and inappropriate responses during a competitive selection process.


Journal of Cognitive Neuroscience | 2014

Generic inhibition of the selected movement and constrained inhibition of nonselected movements during response preparation

Ludovica Labruna; Florent Lebon; Julie Duque; Pierre-Alexandre Klein; Christian Cazares; Richard B. Ivry

Previous studies have identified two inhibitory mechanisms that operate during action selection and preparation. One mechanism, competition resolution, is manifest in the inhibition of the nonselected response and attributed to competition between candidate actions. The second mechanism, impulse control, is manifest in the inhibition of the selected response and is presumably invoked to prevent premature response. To identify constraints on the operation of these two inhibitory mechanisms, we manipulated the effectors used for the response alternatives, measuring changes in corticospinal excitability with motor-evoked potentials to TMS. Inhibition of the selected response (impulse control) was independent of the task context, consistent with a model in which this form of inhibition is automatically triggered as part of response preparation. In contrast, inhibition of the nonselected response (competition resolution) was context-dependent. Inhibition of the nonselected response was observed when the response alternatives involved movements of the upper limbs but was absent when one response alternative involved an upper limb and the other involved a lower limb. Interestingly, competition resolution for pairs of upper limbs did not require homologous effectors, observed when a left index finger response was pitted with either a nonhomologous right index finger movement or a right arm movement. These results argue against models in which competition resolution is viewed as a generic or fully flexible process, as well as models based on strong anatomical constraints. Rather, they are consistent with models in which inhibition for action selection is constrained by the similarity between the potential responses, perhaps reflecting an experience-dependent mechanism sensitive to the past history of competitive interactions.


Cerebral Cortex | 2016

Influence of Delay Period Duration on Inhibitory Processes for Response Preparation

Florent Lebon; Ian Greenhouse; Ludovica Labruna; Benjamin Vanderschelden; Charalambos Papaxanthis; Richard B. Ivry

In this study, we examined the dynamics of inhibitory preparatory processes, using a delayed response task in which a cue signaled a left or right index finger (Experiment 1) or hand (Experiment 2) movement in advance of an imperative signal. In Experiment 1, we varied the duration of the delay period (200, 500, and 900 ms). When transcranial magnetic stimulation (TMS) was applied 100 ms before the imperative, motor evoked potentials (MEPs) elicited in the first dorsal interosseous were strongly inhibited. For delays of 500 ms or longer, this inhibition was greater when the targeted muscle was selected compared with when it was not selected. In contrast, the magnitude of inhibition just after the cue was inversely related to the duration of the delay period, and the difference between the selected and nonselected conditions was attenuated. In Experiment 2, TMS and peripheral nerve stimulation procedures were used during a 300-ms delay period. MEPs in the flexor carpi radialis for both selected and nonselected conditions were inhibited, but without any change in the H-reflex. Taken together, these results reveal the dual influence of temporal constraints associated with anticipation and urgency on inhibitory processes recruited during response preparation.


Brain Stimulation | 2011

Comparison of different baseline conditions in evaluating factors that influence motor cortex excitability

Ludovica Labruna; Miguel Fernández-del-Olmo; Richard B. Ivry

Identifying task-related changes in cortical excitability requires comparing motor evoked potentials (MEPs) measured under an experimental condition with that obtained in a baseline, control condition. The goal of this study was to compare two different procedures for measuring baseline that are commonly used in transcranial magnetic stimulation (TMS) studies. We hypothesized that baseline measurements obtained during task performance may be elevated due to an overall heightened state of arousal or task-specific fluctuations in excitability. Single-pulse TMS was used to elicit MEPs during an experimental task involving action observation. Baseline MEPs were recorded before (preblock) and during (intrablock) the experimental blocks. Intrablock baseline MEPs were modulated in a manner correlated with the effect of the experimental manipulation. Although there are advantages to obtaining baseline measurements during the experimental block, such measurements are biased by the experimental manipulation. Unbiased baseline measurements are best obtained between experimental blocks.

Collaboration


Dive into the Ludovica Labruna's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julie Duque

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian Greenhouse

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pierre-Alexandre Klein

Université catholique de Louvain

View shared research outputs
Researchain Logo
Decentralizing Knowledge