Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ludwig Stenz is active.

Publication


Featured researches published by Ludwig Stenz.


Journal of Bacteriology | 2009

CodY in Staphylococcus aureus: a Regulatory Link between Metabolism and Virulence Gene Expression

Konstanze Pohl; Patrice Francois; Ludwig Stenz; Frank Schlink; Tobias Geiger; Silvia Herbert; Christiane Goerke; Jacques Schrenzel; Christiane Wolz

The repressor CodY is reported to inhibit metabolic genes mainly involved in nitrogen metabolism. We analyzed codY mutants from three unrelated Staphylococcus aureus strains (Newman, UAMS-1, and RN1HG). The mutants grew more slowly than their parent strains in a chemically defined medium. However, only codY mutants were able to grow in medium lacking threonine. An excess of isoleucine resulted in growth inhibition in the wild type but not in the codY mutants, indicating that isoleucine plays a role in CodY-dependent repression. Prototypic CodY-repressed genes including the virulence regulator agr are repressed after up-shift with isoleucine. The CodY-dependent repression of agr is consistent with the concomitant influence of CodY on typical agr-regulated genes such as cap, spa, fnbA, and coa. However, some of these virulence genes (e.g., cap, fnbA, and spa) were also regulated by CodY in an agr-negative background. Microarray analysis revealed that the large majority of CodY-repressed genes were involved in amino acid metabolism; CodY-activated genes were mainly involved in nucleotide metabolism or virulence. In summary, CodY in S. aureus not only acts as a repressor for genes involved in nitrogen metabolism but also contributes to virulence gene regulation by supporting as well as substituting for agr function.


World Journal of Biological Psychiatry | 2014

The Tutsi genocide and transgenerational transmission of maternal stress: epigenetics and biology of the HPA axis

Nader Perroud; Eugène Rutembesa; Ariane Paoloni-Giacobino; Jean Mutabaruka; Léon Mutesa; Ludwig Stenz; Alain Malafosse; Félicien Karege

Abstract Objectives. Transmission of parental post-traumatic stress disorder (PTSD) to offspring might be explained by transmission of epigenetic processes such as methylation status of the glucocorticoid receptor (GR) gene (NR3C1). Methods. We investigated PTSD and depression severity, plasma cortisol, GR and mineralocorticoid receptor (MR) levels, and methylation status of NR3C1 and NR3C2 promoter regions in 25 women exposed to the Tutsi genocide during pregnancy and their children, and 25 women from the same ethnicity, pregnant during the same period but not exposed to the genocide, and their children. Results. Transmission of PTSD to the offspring was associated with transmission of biological alterations of the HPA axis. Mothers exposed to the genocide as well as their children had lower cortisol and GR levels and higher MR levels than non-exposed mothers and their children. Moreover, exposed mothers and their children had higher methylation of the NR3C1 exon 1F than non-exposed groups. Finally, exposed mothers showed higher methylation of CpGs located within the NR3C2 coding sequence than non-exposed mothers. Conclusions. PTSD was associated with NR3C1 epigenetic modifications that were similarly found in the mothers and their offspring, modifications that may underlie the possible transmission of biological alterations of the HPA axis.


Journal of Antimicrobial Chemotherapy | 2011

Daptomycin resistance mechanisms in clinically derived Staphylococcus aureus strains assessed by a combined transcriptomics and proteomics approach

Adrien Fischer; Soo-Jin Yang; Arnold S. Bayer; Ali R. Vaezzadeh; Sébastien Herzig; Ludwig Stenz; Myriam Girard; George Sakoulas; Alexander Scherl; Michael R. Yeaman; Richard A. Proctor; Jacques Schrenzel; Patrice Francois

OBJECTIVES The development of daptomycin resistance in Staphylococcus aureus is associated with clinical treatment failures. The mechanism(s) of such resistance have not been clearly defined. METHODS We studied an isogenic daptomycin-susceptible (DAP(S)) and daptomycin-resistant (DAP(R)) S. aureus strain pair (616; 701) from a patient with relapsing endocarditis during daptomycin treatment, using comparative transcriptomic and proteomic techniques. RESULTS Minor differences in the genome content were found between strains by DNA hybridization. Transcriptomic analyses identified a number of genes differentially expressed in important functional categories: cell division; metabolism of bacterial envelopes; and global regulation. Of note, the DAP(R) isolate exhibited reduced expression of the major cell wall autolysis gene coincident with the up-regulation of genes involved in cell wall teichoic acid production. Using quantitative (q)RT-PCR on the gene cadre putatively involved in cationic peptide resistance, we formulated a putative regulatory network compatible with microarray data sets, mainly implicating bacterial envelopes. Of interest, qRT-PCR of this same gene cadre from two distinct isogenic DAP(S)/DAP(R) clinical strain pairs revealed evidence of other strain-dependent networks operative in the DAP(R) phenotype. Comparative proteomics of 616 versus 701 revealed a differential abundance of proteins in various functional categories, including cell wall-associated targets and biofilm formation proteins. Phenotypically, strains 616 and 701 showed major differences in their ability to develop bacterial biofilms in the presence of the antibacterial lipid, oleic acid. CONCLUSIONS Compatible with previous in vitro observations, in vivo-acquired DAP(R) in S. aureus is a complex, multistep phenomenon involving: (i) strain-dependent phenotypes; (ii) transcriptome adaptation; and (iii) modification of the lipid and protein contents of cellular envelopes.


Fems Immunology and Medical Microbiology | 2011

The CodY pleiotropic repressor controls virulence in gram-positive pathogens

Ludwig Stenz; Patrice Francois; Katrine Whiteson; Christiane Wolz; Patrick Linder; Jacques Schrenzel

CodY is involved in the adaptive response to starvation in at least 30 different low G+C gram-positive bacteria. After dimerization and activation by cofactor binding, CodY binds to a consensus palindromic DNA sequence, leading to the repression of approximately 5% of the genome. CodY represses the transcription of target genes when bound to DNA by competition with the RNA polymerase for promoter binding, or by interference with transcriptional elongation as a roadblock. CodY displays enhanced affinity for its DNA target when bound to GTP and/or branched chain amino acids (BCAA). When nutrients become limiting in the postexponential growth phase, a decrease of intracellular levels of GTP and BCAA causes a deactivation of CodY and decreases its affinity for DNA, leading to the induction of its regulon. CodY-regulated genes trigger adaptation of the bacteria to starvation by highly diverse mechanisms, such as secretion of proteases coupled to expression of amino acid transporters, and promotion of survival strategies like sporulation or biofilm formation. Additionally, in pathogenic bacteria, several virulence factors are regulated by CodY. As a function of their access to nutrients, pathogenic gram-positive bacteria express virulence factors in a codY-dependant manner. This is true for the anthrax toxins of Bacillus anthracis and the haemolysins of Staphylococcus aureus. The purpose of this review is to illustrate CodY-regulated mechanisms on virulence in major gram-positive pathogens.


Environmental Microbiology Reports | 2011

Staphylococcus aureus virulence and metabolism are dramatically affected by Lactococcus lactis in cheese matrix

Marina Cretenet; S. Nouaille; Jennifer Thouin; Lucie Rault; Ludwig Stenz; Patrice Francois; Jacques-Antoine Hennekinne; Michel Piot; Marie Bernadette Maillard; Jacques Fauquant; Pascal Loubière; Yves Le Loir; Sergine Even

In complex environments such as cheeses, the lack of relevant information on the physiology and virulence expression of pathogenic bacteria and the impact of endogenous microbiota has hindered progress in risk assessment and control. Here, we investigated the behaviour of Staphylococcus aureus, a major foodborne pathogen, in a cheese matrix, either alone or in the presence of Lactococcus lactis, as a dominant species of cheese ecosystems. The dynamics of S. aureus was explored in situ by coupling a microbiological and, for the first time, a transcriptomic approach. Lactococcus lactis affected the carbohydrate and nitrogen metabolisms and the stress response of S. aureus by acidifying, proteolysing and decreasing the redox potential of the cheese matrix. Enterotoxin expression was positively or negatively modulated by both L. lactis and the cheese matrix itself, depending on the enterotoxin type. Among the main enterotoxins involved in staphylococcal food poisoning, sea expression was slightly favoured in the presence of L. lactis, whereas a strong repression of sec4 was observed in cheese matrix, even in the absence of L. lactis, and correlated with a reduced saeRS expression. Remarkably, the agr system was downregulated by the presence of L. lactis, in part because of the decrease in pH. This study highlights the intimate link between environment, metabolism and virulence, as illustrated by the influence of the cheese matrix context, including the presence of L. lactis, on two major virulence regulators, the agr system and saeRS.


Fems Microbiology Letters | 2008

Impact of oleic acid (cis-9-octadecenoic acid) on bacterial viability and biofilm production in Staphylococcus aureus.

Ludwig Stenz; Patrice Francois; Adrien Fischer; Antoine Huyghe; Manuela Tangomo; David Hernandez; James E. Cassat; Patrick Linder; Jacques Schrenzel

Staphylococcus aureus is responsible for a broad variety of chronic infections. Most S. aureus clinical isolates show the capacity to adhere to abiotic surfaces and to develop biofilms. Because S. aureus growing in a biofilm is highly refractory to treatment, inhibition of biofilm formation represents a major therapeutic objective. We evaluated the effects of oleic acid on primary adhesion and biofilm production in eight genotypically different S. aureus strains as well as in the biofilm-negative Staphylococcus carnosus strain TM300. Oleic acid inhibited primary adhesion but increased biofilm production in every S. aureus strain tested. Staphylococcus aureus strain UAMS-1 was then selected as a model organism for studying the mechanisms triggered by oleic acid on the formation of a biofilm in vitro. Oleic acid inhibited the primary adhesion of UAMS-1 dose dependently with an IC(50) around 0.016%. The adherent bacterial population decreased proportionally with increasing concentrations of oleic acid whereas an opposite effect was observed on the planktonic population. Overall, the total bacterial counts remained stable. Macroscopic detachments and clumps were visible from the adherent bacterial population. In the presence of oleic acid, the expression of sigB, a gene potentially involved in bacterial survival through an effect on fatty acid composition, was not induced. Our results suggest a natural protective effect of oleic acid against primary adhesion.


Depression and Anxiety | 2016

METHYLATION OF SEROTONIN RECEPTOR 3A IN ADHD, BORDERLINE PERSONALITY, AND BIPOLAR DISORDERS: LINK WITH SEVERITY OF THE DISORDERS AND CHILDHOOD MALTREATMENT

Nader Perroud; Seblewongel Zewdie; Ludwig Stenz; Wafae Adouan; Sabine Bavamian; Paco Prada; Rosetta Nicastro; Roland Hasler; Audrey Nallet; Camille Piguet; Ariane Paoloni-Giacobino; Jean-Michel Aubry; Alexandre Dayer

Serotonin 3A receptor (5‐HT3AR) is associated at the genetic and epigenetic levels with a variety of psychiatric disorders and interacts with early‐life stress such as childhood maltreatment. We studied the impact of childhood maltreatment on the methylation status of the 5‐HT3AR and its association with clinical severity outcomes in relation with a functional genetic polymorphism.


Neuroscience Research | 2015

BDNF promoter I methylation correlates between post-mortem human peripheral and brain tissues

Ludwig Stenz; Seblewongel Zewdie; Térèse Laforge-Escarra; Julien Prados; Romano La Harpe; Alexandre Dayer; Ariane Paoloni-Giacobino; Nader Perroud; Jean-Michel Aubry

Several psychiatric disorders have been associated with CpG methylation changes in CG rich promoters of the brain-derived neurotrophic factor (BDNF) mainly by extracting DNA from peripheral blood cells. Whether changes in peripheral DNA methylation can be used as a proxy for brain-specific alterations remains an open question. In this study we aimed to compare DNA methylation levels in BDNF promoter regions in human blood cells, muscle and brain regions using bisulfite-pyrosequencing. We found a significant correlation between the levels of BDNF promoter I methylation measured in quadriceps and vPFC tissues extracted from the same individuals (n = 98, Pearson, r = 0.48, p = 4.5 × 10(-7)). In the hippocampus, BDNF promoter I and IV methylation levels were strongly correlated (Pearson, n = 37, r = 0.74, p = 1.4 × 10(-7)). We found evidence for sex-dependent effect on BDNF promoter methylation levels in the various tissues and blood samples. Taken together, these data indicate a strong intra-individual correlation between peripheral and brain tissue. They also suggest that sex determines methylation patterns in BDNF promoter region across different types of tissue, including muscle, brain, and blood.


Genes, Brain and Behavior | 2015

Borderline personality disorder and childhood maltreatment: a genome‐wide methylation analysis

Julien Prados; Ludwig Stenz; Philippe Courtet; Paco Prada; Rosetta Nicastro; Wafae Adouan; Sébastien Guillaume; Emilie Olié; Jean-Michel Aubry; Alexandre Dayer; Nader Perroud

Early life adversity plays a critical role in the emergence of borderline personality disorder (BPD) and this could occur through epigenetic programming. In this perspective, we aimed to determine whether childhood maltreatment could durably modify epigenetic processes by the means of a whole‐genome methylation scan of BPD subjects. Using the Illumina Infinium® HumanMethylation450 BeadChip, global methylation status of DNA extracted from peripheral blood leucocytes was correlated to the severity of childhood maltreatment in 96 BPD subjects suffering from a high level of child adversity and 93 subjects suffering from major depressive disorder (MDD) and reporting a low rate of child maltreatment. Several CpGs within or near the following genes (IL17RA, miR124‐3, KCNQ2, EFNB1, OCA2, MFAP2, RPH3AL, WDR60, CST9L, EP400, A2ML1, NT5DC2, FAM163A and SPSB2) were found to be differently methylated, either in BPD compared with MDD or in relation to the severity of childhood maltreatment. A highly relevant biological result was observed for cg04927004 close to miR124‐3 that was significantly associated with BPD and severity of childhood maltreatment. miR124‐3 codes for a microRNA (miRNA) targeting several genes previously found to be associated with BPD such as NR3C1. Our results highlight the potentially important role played by miRNAs in the etiology of neuropsychiatric disorders such as BPD and the usefulness of using methylome‐wide association studies to uncover such candidate genes. Moreover, they offer new understanding of the impact of maltreatments on biological processes leading to diseases and may ultimately result in the identification of relevant biomarkers.


Frontiers in Psychology | 2015

Methylation of NR3C1 is related to maternal PTSD, parenting stress and maternal medial prefrontal cortical activity in response to child separation among mothers with histories of violence exposure.

Daniel S. Schechter; Dominik A. Moser; Ariane Paoloni-Giacobino; Ludwig Stenz; Marianne Gex-Fabry; Tatjana Aue; Wafae Adouan; Maria I. Cordero; Francesca Suardi; Aurelia Manini; Ana Sancho Rossignol; Gaëlle Merminod; François Ansermet; Alexandre Dayer; Sandra Rusconi Serpa

Prior research has shown that mothers with Interpersonal violence-related posttraumatic stress disorder (IPV-PTSD) report greater difficulty in parenting their toddlers. Relative to their frequent early exposure to violence and maltreatment, these mothers display dysregulation of their hypothalamic pituitary adrenal axis (HPA-axis), characterized by hypocortisolism. Considering methylation of the promoter region of the glucocorticoid receptor gene NR3C1 as a marker for HPA-axis functioning, with less methylation likely being associated with less circulating cortisol, the present study tested the hypothesis that the degree of methylation of this gene would be negatively correlated with maternal IPV-PTSD severity and parenting stress, and positively correlated with medial prefrontal cortical (mPFC) activity in response to video-stimuli of stressful versus non-stressful mother–child interactions. Following a mental health assessment, 45 mothers and their children (ages 12–42 months) participated in a behavioral protocol involving free-play and laboratory stressors such as mother–child separation. Maternal DNA was extracted from saliva. Interactive behavior was rated on the CARE-Index. During subsequent fMRI scanning, mothers were shown films of free-play and separation drawn from this protocol. Maternal PTSD severity and parenting stress were negatively correlated with the mean percentage of methylation of NR3C1. Maternal mPFC activity in response to video-stimuli of mother–child separation versus play correlated positively to NR3C1 methylation, and negatively to maternal IPV-PTSD and parenting stress. Among interactive behavior variables, child cooperativeness in play was positively correlated with NR3C1 methylation. Thus, the present study is the first published report to our knowledge, suggesting convergence of behavioral, epigenetic, and neuroimaging data that form a psychobiological signature of parenting-risk in the context of early life stress and PTSD.

Collaboration


Dive into the Ludwig Stenz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge