Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luigi Bellocchio is active.

Publication


Featured researches published by Luigi Bellocchio.


Nature Neuroscience | 2012

Mitochondrial CB1 receptors regulate neuronal energy metabolism

Giovanni Benard; Federico Massa; Nagore Puente; Joana Lourenço; Luigi Bellocchio; Edgar Soria-Gómez; Isabel Matias; Anna Delamarre; Mathilde Metna-Laurent; Astrid Cannich; Etienne Hebert-Chatelain; Christophe Mulle; Silvia Ortega-Gutiérrez; Mar Martín-Fontecha; Matthias Klugmann; Stephan Guggenhuber; Beat Lutz; Jürg Gertsch; Francis Chaouloff; María L. López-Rodríguez; Pedro Grandes; Rodrigue Rossignol; Giovanni Marsicano

The mammalian brain is one of the organs with the highest energy demands, and mitochondria are key determinants of its functions. Here we show that the type-1 cannabinoid receptor (CB1) is present at the membranes of mouse neuronal mitochondria (mtCB1), where it directly controls cellular respiration and energy production. Through activation of mtCB1 receptors, exogenous cannabinoids and in situ endocannabinoids decreased cyclic AMP concentration, protein kinase A activity, complex I enzymatic activity and respiration in neuronal mitochondria. In addition, intracellular CB1 receptors and mitochondrial mechanisms contributed to endocannabinoid-dependent depolarization-induced suppression of inhibition in the hippocampus. Thus, mtCB1 receptors directly modulate neuronal energy metabolism, revealing a new mechanism of action of G protein–coupled receptor signaling in the brain.


Nature Neuroscience | 2010

Bimodal control of stimulated food intake by the endocannabinoid system

Luigi Bellocchio; Pauline Lafenetre; Astrid Cannich; Daniela Cota; Nagore Puente; Pedro Grandes; Francis Chaouloff; Pier Vincenzo Piazza; Giovanni Marsicano

Activation of cannabinoid type-1 receptors (CB1) is universally recognized as a powerful endogenous orexigenic signal, but the detailed underlying neuronal mechanisms are not fully understood. Using combined genetic and pharmacological approaches in mice, we found that ventral striatal CB1 receptors exerted a hypophagic action through inhibition of GABAergic transmission. Conversely, brain CB1 receptors modulating excitatory transmission mediated the well-known orexigenic effects of cannabinoids.


Cell Metabolism | 2010

CB(1) signaling in forebrain and sympathetic neurons is a key determinant of endocannabinoid actions on energy balance.

Carmelo Quarta; Luigi Bellocchio; Giacomo Mancini; Roberta Mazza; Cristina Cervino; Luzie J. Braulke; Csaba Fekete; Rocco Latorre; Cristina Nanni; Marco Bucci; Laura E. Clemens; Gerhard Heldmaier; Masahiko Watanabe; Thierry Leste-Lassere; Marlène Maitre; Laura Tedesco; Flaminia Fanelli; Stefan Reuss; Susanne Klaus; Raj Kamal Srivastava; Krisztina Monory; Alessandra Valerio; Annamaria Grandis; Roberto De Giorgio; Renato Pasquali; Enzo Nisoli; Daniela Cota; Beat Lutz; Giovanni Marsicano; Uberto Pagotto

The endocannabinoid system (ECS) plays a critical role in obesity development. The pharmacological blockade of cannabinoid receptor type 1 (CB(1)) has been shown to reduce body weight and to alleviate obesity-related metabolic disorders. An unsolved question is at which anatomical level CB(1) modulates energy balance and the mechanisms involved in its action. Here, we demonstrate that CB(1) receptors expressed in forebrain and sympathetic neurons play a key role in the pathophysiological development of diet-induced obesity. Conditional mutant mice lacking CB(1) expression in neurons known to control energy balance, but not in nonneuronal peripheral organs, displayed a lean phenotype and resistance to diet-induced obesity. This phenotype results from an increase in lipid oxidation and thermogenesis as a consequence of an enhanced sympathetic tone and a decrease in energy absorption. In conclusion, CB(1) signaling in the forebrain and sympathetic neurons is a key determinant of the ECS control of energy balance.


Science | 2014

Pregnenolone Can Protect the Brain from Cannabis Intoxication

Monique Vallée; S. Vitiello; Luigi Bellocchio; Etienne Hebert-Chatelain; Stéphanie Monlezun; Elena Martín-García; Fernando Kasanetz; Gemma L. Baillie; Francesca Panin; Adeline Cathala; Valérie Roullot-Lacarrière; Sandy Fabre; Dow P. Hurst; Diane L. Lynch; Derek M. Shore; Véronique Deroche-Gamonet; Umberto Spampinato; Jean-Michel Revest; Rafael Maldonado; Patricia H. Reggio; Ruth A. Ross; Giovanni Marsicano; Pier Vincenzo Piazza

Counteracting Cannabis What is the role of steroid hormones in vulnerability to addiction? Working with rodents, Vallée et al. (p. 94) found that all major drugs of abuse (morphine, cocaine, alcohol, nicotine) increase neurosteroid levels, with the active ingredient in cannabis (THC) inducing a particularly large increase. THC and other drugs increased levels of pregnenolone, long thought to be an inactive precursor of downstream active steroids. Pregnenolone antagonized most of the known behavioral and somatic effects of THC. The universal precursor of steroid hormones acts as a negative allosteric modulator of cannabinoid receptors. Pregnenolone is considered the inactive precursor of all steroid hormones, and its potential functional effects have been largely uninvestigated. The administration of the main active principle of Cannabis sativa (marijuana), ∆9-tetrahydrocannabinol (THC), substantially increases the synthesis of pregnenolone in the brain via activation of the type-1 cannabinoid (CB1) receptor. Pregnenolone then, acting as a signaling-specific inhibitor of the CB1 receptor, reduces several effects of THC. This negative feedback mediated by pregnenolone reveals a previously unknown paracrine/autocrine loop protecting the brain from CB1 receptor overactivation that could open an unforeseen approach for the treatment of cannabis intoxication and addiction.


Nature Neuroscience | 2014

The endocannabinoid system controls food intake via olfactory processes

Edgar Soria-Gómez; Luigi Bellocchio; Leire Reguero; Gabriel Lepousez; Claire Martin; Mounir Bendahmane; Sabine Ruehle; Floor Remmers; Tiffany Desprez; Isabelle Matias; Theresa Wiesner; Astrid Cannich; Antoine Nissant; Aya Wadleigh; Hans-Christian Pape; Anna Chiarlone; Carmelo Quarta; Danièle Verrier; Peggy Vincent; Federico Massa; Beat Lutz; Manuel Guzmán; Hirac Gurden; Guillaume Ferreira; Pierre-Marie Lledo; Pedro Grandes; Giovanni Marsicano

Hunger arouses sensory perception, eventually leading to an increase in food intake, but the underlying mechanisms remain poorly understood. We found that cannabinoid type-1 (CB1) receptors promote food intake in fasted mice by increasing odor detection. CB1 receptors were abundantly expressed on axon terminals of centrifugal cortical glutamatergic neurons that project to inhibitory granule cells of the main olfactory bulb (MOB). Local pharmacological and genetic manipulations revealed that endocannabinoids and exogenous cannabinoids increased odor detection and food intake in fasted mice by decreasing excitatory drive from olfactory cortex areas to the MOB. Consistently, cannabinoid agonists dampened in vivo optogenetically stimulated excitatory transmission in the same circuit. Our data indicate that cortical feedback projections to the MOB crucially regulate food intake via CB1 receptor signaling, linking the feeling of hunger to stronger odor processing. Thus, CB1 receptor–dependent control of cortical feedback projections in olfactory circuits couples internal states to perception and behavior.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Anti-inflammatory lipoxin A4 is an endogenous allosteric enhancer of CB1 cannabinoid receptor

Fabrício A. Pamplona; Juliano Ferreira; Octávio Menezes de Lima; Filipe S. Duarte; Allisson Freire Bento; Stefânia Forner; Jardel Gomes Villarinho; Luigi Bellocchio; Carsten T. Wotjak; Raissa Lerner; Krisztina Monory; Beat Lutz; Claudio Canetti; Isabelle Matias; João B. Calixto; Giovanni Marsicano; Marília Zaluar P. Guimarães; Reinaldo N. Takahashi

Allosteric modulation of G-protein–coupled receptors represents a key goal of current pharmacology. In particular, endogenous allosteric modulators might represent important targets of interventions aimed at maximizing therapeutic efficacy and reducing side effects of drugs. Here we show that the anti-inflammatory lipid lipoxin A4 is an endogenous allosteric enhancer of the CB1 cannabinoid receptor. Lipoxin A4 was detected in brain tissues, did not compete for the orthosteric binding site of the CB1 receptor (vs. 3H-SR141716A), and did not alter endocannabinoid metabolism (as opposed to URB597 and MAFP), but it enhanced affinity of anandamide at the CB1 receptor, thereby potentiating the effects of this endocannabinoid both in vitro and in vivo. In addition, lipoxin A4 displayed a CB1 receptor-dependent protective effect against β-amyloid (1–40)-induced spatial memory impairment in mice. The discovery of lipoxins as a class of endogenous allosteric modulators of CB1 receptors may foster the therapeutic exploitation of the endocannabinoid system, in particular for the treatment of neurodegenerative disorders.


Proceedings of the National Academy of Sciences of the United States of America | 2014

A restricted population of CB1 cannabinoid receptors with neuroprotective activity

Anna Chiarlone; Luigi Bellocchio; Cristina Blázquez; Eva Resel; Edgar Soria-Gómez; Astrid Cannich; José Javier Ferrero; Onintza Sagredo; Cristina Benito; Julián Romero; José Sánchez-Prieto; Beat Lutz; Javier Fernández-Ruiz; Ismael Galve-Roperh; Manuel Guzmán

Significance Cannabinoids and their endogenous counterparts, the so-called endocannabinoids, promote neuroprotection in laboratory animals by engaging CB1 cannabinoid receptors, one of the most abundant types of receptors in the brain. However, the assessment of the physiological relevance and therapeutic potential of the CB1 receptor in neurological diseases is hampered, at least in part, by the lack of knowledge of the neuron-population specificity of CB1 receptor action. This study shows that a unique and well-defined population of CB1 receptors, namely that located on glutamatergic terminals, plays a key neuroprotective role in the mouse brain. This finding opens a new conceptual view on how the CB1 receptor evokes neuroprotection, and provides preclinical support for improving the development of cannabinoid-based neuroprotective therapies. The CB1 cannabinoid receptor, the main molecular target of endocannabinoids and cannabis active components, is the most abundant G protein-coupled receptor in the mammalian brain. Of note, CB1 receptors are expressed at the synapses of two opposing (i.e., GABAergic/inhibitory and glutamatergic/excitatory) neuronal populations, so the activation of one and/or another receptor population may conceivably evoke different effects. Despite the widely reported neuroprotective activity of the CB1 receptor in animal models, the precise pathophysiological relevance of those two CB1 receptor pools in neurodegenerative processes is unknown. Here, we first induced excitotoxic damage in the mouse brain by (i) administering quinolinic acid to conditional mutant animals lacking CB1 receptors selectively in GABAergic or glutamatergic neurons, and (ii) manipulating corticostriatal glutamatergic projections remotely with a designer receptor exclusively activated by designer drug pharmacogenetic approach. We next examined the alterations that occur in the R6/2 mouse, a well-established model of Huntington disease, upon (i) fully knocking out CB1 receptors, and (ii) deleting CB1 receptors selectively in corticostriatal glutamatergic or striatal GABAergic neurons. The data unequivocally identify the restricted population of CB1 receptors located on glutamatergic terminals as an indispensable player in the neuroprotective activity of (endo)cannabinoids, therefore suggesting that this precise receptor pool constitutes a promising target for neuroprotective therapeutic strategies.


Nature | 2016

A cannabinoid link between mitochondria and memory.

Etienne Hebert-Chatelain; Tifany Desprez; Román Serrat; Luigi Bellocchio; Edgar Soria-Gómez; Arnau Busquets-Garcia; Antonio C. Pagano Zottola; Anna Delamarre; Astrid Cannich; Peggy Vincent; Marjorie Varilh; Laurie M. Robin; Geoffrey Terral; M. Dolores García-Fernández; Michelangelo Colavita; Wilfrid Mazier; Filippo Drago; Nagore Puente; Leire Reguero; Izaskun Elezgarai; Jean-William Dupuy; Daniela Cota; Maria-Luz Lopez-Rodriguez; Gabriel Barreda-Gómez; Federico Massa; Pedro Grandes; Giovanni Benard; Giovanni Marsicano

Cellular activity in the brain depends on the high energetic support provided by mitochondria, the cell organelles which use energy sources to generate ATP. Acute cannabinoid intoxication induces amnesia in humans and animals, and the activation of type-1 cannabinoid receptors present at brain mitochondria membranes (mtCB1) can directly alter mitochondrial energetic activity. Although the pathological impact of chronic mitochondrial dysfunctions in the brain is well established, the involvement of acute modulation of mitochondrial activity in high brain functions, including learning and memory, is unknown. Here, we show that acute cannabinoid-induced memory impairment in mice requires activation of hippocampal mtCB1 receptors. Genetic exclusion of CB1 receptors from hippocampal mitochondria prevents cannabinoid-induced reduction of mitochondrial mobility, synaptic transmission and memory formation. mtCB1 receptors signal through intra-mitochondrial Gαi protein activation and consequent inhibition of soluble-adenylyl cyclase (sAC). The resulting inhibition of protein kinase A (PKA)-dependent phosphorylation of specific subunits of the mitochondrial electron transport system eventually leads to decreased cellular respiration. Hippocampal inhibition of sAC activity or manipulation of intra-mitochondrial PKA signalling or phosphorylation of the Complex I subunit NDUFS2 inhibit bioenergetic and amnesic effects of cannabinoids. Thus, the G protein-coupled mtCB1 receptors regulate memory processes via modulation of mitochondrial energy metabolism. By directly linking mitochondrial activity to memory formation, these data reveal that bioenergetic processes are primary acute regulators of cognitive functions.


Endocrinology | 2012

Hypothalamic CB1 Cannabinoid Receptors Regulate Energy Balance in Mice

Pierre Cardinal; Luigi Bellocchio; Samantha Clark; Astrid Cannich; Matthias Klugmann; Beat Lutz; Giovanni Marsicano; Daniela Cota

Cannabinoid type 1 (CB(1)) receptor activation is generally considered a powerful orexigenic signal and inhibition of the endocannabinoid system is beneficial for the treatment of obesity and related metabolic diseases. The hypothalamus plays a critical role in regulating energy balance by modulating both food intake and energy expenditure. Although CB(1) receptor signaling has been implicated in the modulation of both these mechanisms, a complete understanding of its role in the hypothalamus is still lacking. Here we combined a genetic approach with the use of adeno-associated viral vectors to delete the CB(1) receptor gene in the adult mouse hypothalamus and assessed the impact of such manipulation on the regulation of energy balance. Viral-mediated deletion of the CB(1) receptor gene in the hypothalamus led to the generation of Hyp-CB(1)-KO mice, which displayed an approximately 60% decrease in hypothalamic CB(1) receptor mRNA levels. Hyp-CB(1)-KO mice maintained on a normocaloric, standard diet showed decreased body weight gain over time, which was associated with increased energy expenditure and elevated β(3)-adrenergic receptor and uncoupling protein-1 mRNA levels in the brown adipose tissue but, surprisingly, not to changes in food intake. Additionally, Hyp-CB(1)-KO mice were insensitive to the anorectic action of the hormone leptin (5 mg/kg) and displayed a time-dependent hypophagic response to the CB(1) inverse agonist rimonabant (3 mg/kg). Altogether these findings suggest that hypothalamic CB(1) receptor signaling is a key determinant of energy expenditure under basal conditions and reveal its specific role in conveying the effects of leptin and pharmacological CB1 receptor antagonism on food intake.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Activation of the sympathetic nervous system mediates hypophagic and anxiety-like effects of CB₁ receptor blockade.

Luigi Bellocchio; Edgar Soria-Gómez; Carmelo Quarta; Mathilde Metna-Laurent; Pierre Cardinal; Elke Binder; Astrid Cannich; Anna Delamarre; Martin Häring; Mar Martín-Fontecha; David Vega; Thierry Leste-Lasserre; Dusan Bartsch; Krisztina Monory; Beat Lutz; Francis Chaouloff; Uberto Pagotto; Manuel Guzmán; Daniela Cota; Giovanni Marsicano

Complex interactions between periphery and the brain regulate food intake in mammals. Cannabinoid type-1 (CB1) receptor antagonists are potent hypophagic agents, but the sites where this acute action is exerted and the underlying mechanisms are not fully elucidated. To dissect the mechanisms underlying the hypophagic effect of CB1 receptor blockade, we combined the acute injection of the CB1 receptor antagonist rimonabant with the use of conditional CB1-knockout mice, as well as with pharmacological modulation of different central and peripheral circuits. Fasting/refeeding experiments revealed that CB1 receptor signaling in many specific brain neurons is dispensable for the acute hypophagic effects of rimonabant. CB1 receptor antagonist-induced hypophagia was fully abolished by peripheral blockade of β-adrenergic transmission, suggesting that this effect is mediated by increased activity of the sympathetic nervous system. Consistently, we found that rimonabant increases gastrointestinal metabolism via increased peripheral β-adrenergic receptor signaling in peripheral organs, including the gastrointestinal tract. Blockade of both visceral afferents and glutamatergic transmission in the nucleus tractus solitarii abolished rimonabant-induced hypophagia. Importantly, these mechanisms were specifically triggered by lipid-deprivation, revealing a nutrient-specific component acutely regulated by CB1 receptor blockade. Finally, peripheral blockade of sympathetic neurotransmission also blunted central effects of CB1 receptor blockade, such as fear responses and anxiety-like behaviors. These data demonstrate that, independently of their site of origin, important effects of CB1 receptor blockade are expressed via activation of peripheral sympathetic activity. Thus, CB1 receptors modulate bidirectional circuits between the periphery and the brain to regulate feeding and other behaviors.

Collaboration


Dive into the Luigi Bellocchio's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniela Cota

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar

Manuel Guzmán

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Beat Lutz

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge