Luigi Guarino
Food and Agriculture Organization
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Luigi Guarino.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Colin K. Khoury; Anne D. Bjorkman; Hannes Dempewolf; Julian Ramirez-Villegas; Luigi Guarino; Andy Jarvis; Loren H. Rieseberg; P.C. Struik
Significance This study provides evidence of change in the relative importance of different crop plants in national food supplies worldwide over the past 50 years. Within a global trend of increased overall quantities of food calories, protein, fat, and weight, and increased proportions of those quantities sourcing from energy-dense foods, national food supplies diversified in regard to contributing measured crop commodities. As a consequence, national food supplies globally have become increasingly similar in composition, based upon a suite of truly global crop plants. The growth in reliance worldwide on these crops heightens interdependence among countries in their food supplies, plant genetic resources, and nutritional priorities. The narrowing of diversity in crop species contributing to the world’s food supplies has been considered a potential threat to food security. However, changes in this diversity have not been quantified globally. We assess trends over the past 50 y in the richness, abundance, and composition of crop species in national food supplies worldwide. Over this period, national per capita food supplies expanded in total quantities of food calories, protein, fat, and weight, with increased proportions of those quantities sourcing from energy-dense foods. At the same time the number of measured crop commodities contributing to national food supplies increased, the relative contribution of these commodities within these supplies became more even, and the dominance of the most significant commodities decreased. As a consequence, national food supplies worldwide became more similar in composition, correlated particularly with an increased supply of a number of globally important cereal and oil crops, and a decline of other cereal, oil, and starchy root species. The increase in homogeneity worldwide portends the establishment of a global standard food supply, which is relatively species-rich in regard to measured crops at the national level, but species-poor globally. These changes in food supplies heighten interdependence among countries in regard to availability and access to these food sources and the genetic resources supporting their production, and give further urgency to nutrition development priorities aimed at bolstering food security.
Nature plants | 2016
Nora P. Castañeda-Álvarez; Colin K. Khoury; Harold A. Achicanoy; Vivian Bernau; Hannes Dempewolf; Ruth J. Eastwood; Luigi Guarino; Ruth H. Harker; Andrew Jarvis; N. Maxted; Jonas V. Müller; Julian Ramirez-Villegas; Chrystian C. Sosa; P.C. Struik; Holly Vincent; Jane Toll
The wild relatives of domesticated crops possess genetic diversity useful for developing more productive, nutritious and resilient crop varieties. However, their conservation status and availability for utilization are a concern, and have not been quantified globally. Here, we model the global distribution of 1,076 taxa related to 81 crops, using occurrence information collected from biodiversity, herbarium and gene bank databases. We compare the potential geographic and ecological diversity encompassed in these distributions with that currently accessible in gene banks, as a means to estimate the comprehensiveness of the conservation of genetic diversity. Our results indicate that the diversity of crop wild relatives is poorly represented in gene banks. For 313 (29.1% of total) taxa associated with 63 crops, no germplasm accessions exist, and a further 257 (23.9%) are represented by fewer than ten accessions. Over 70% of taxa are identified as high priority for further collecting in order to improve their representation in gene banks, and over 95% are insufficiently represented in regard to the full range of geographic and ecological variation in their native distributions. The most critical collecting gaps occur in the Mediterranean and the Near East, western and southern Europe, Southeast and East Asia, and South America. We conclude that a systematic effort is needed to improve the conservation and availability of crop wild relatives for use in plant breeding.
Agroecology and Sustainable Food Systems | 2014
Hannes Dempewolf; Ruth J. Eastwood; Luigi Guarino; Colin K. Khoury; Jonas V. Müller; Jane Toll
The main objective of the“Adapting Agriculture to Climate Change” project is to collect and protect the genetic diversity of a portfolio of plants with the characteristics required for adapting the worlds most important food crops to climate change. The initiative also aims to make available this diversity in a form that plant breeders can readily use to produce varieties adapted to the new climatic conditions that farmers, particularly in the developing world, are already encountering. Such adaptation is a key component of securing the worlds future food production. This paper serves to inform interested researchers of this important initiative and encourage collaboration under its umbrella.
PLOS ONE | 2010
Julian Ramirez-Villegas; Colin K. Khoury; Andy Jarvis; Daniel G. Debouck; Luigi Guarino
Background The wild relatives of crops represent a major source of valuable traits for crop improvement. These resources are threatened by habitat destruction, land use changes, and other factors, requiring their urgent collection and long-term availability for research and breeding from ex situ collections. We propose a method to identify gaps in ex situ collections (i.e. gap analysis) of crop wild relatives as a means to guide efficient and effective collecting activities. Methodology/Principal Findings The methodology prioritizes among taxa based on a combination of sampling, geographic, and environmental gaps. We apply the gap analysis methodology to wild taxa of the Phaseolus genepool. Of 85 taxa, 48 (56.5%) are assigned high priority for collecting due to lack of, or under-representation, in genebanks, 17 taxa are given medium priority for collecting, 15 low priority, and 5 species are assessed as adequately represented in ex situ collections. Gap “hotspots”, representing priority target areas for collecting, are concentrated in central Mexico, although the narrow endemic nature of a suite of priority species adds a number of specific additional regions to spatial collecting priorities. Conclusions/Significance Results of the gap analysis method mostly align very well with expert opinion of gaps in ex situ collections, with only a few exceptions. A more detailed prioritization of taxa and geographic areas for collection can be achieved by including in the analysis predictive threat factors, such as climate change or habitat destruction, or by adding additional prioritization filters, such as the degree of relatedness to cultivated species (i.e. ease of use in crop breeding). Furthermore, results for multiple crop genepools may be overlaid, which would allow a global analysis of gaps in ex situ collections of the worlds plant genetic resources.
Genetic Resources and Crop Evolution | 2010
Colin K. Khoury; Brigitte Laliberté; Luigi Guarino
In 2005, the newly established Global Crop Diversity Trust initiated a consultation process leading to the development of over 30 global crop and regional strategies for the ex situ conservation and utilisation of crop diversity. These strategies represent a major undertaking the field of plant genetic resources, mobilizing experts to collaboratively plan for the more efficient and effective conservation and use of crop diversity. The strategies are reviewed for eight themes: regeneration, crop wild relatives, collecting, crop descriptors, information systems, user priorities, new technologies and research, and challenges to building a strategy for rational conservation. The themes shed light upon the status, constraints, and promising directions regarding ex situ conservation and utilization of plant genetic resources globally, and provide insight into the current challenges to planning for an efficient and effective global system. The primary constraints affecting conservation, use, and planning are the quality and availability of accession-level information, and availability of resources for regeneration, collecting, and research. A series of connected organizations working at the global level are addressing some of the major constraints in regeneration, collecting, information systems, descriptors, user involvement, and new technology development, although certain crops and regions will need additional support beyond the activities currently funded, particularly in collecting and in the development of specific conservation technologies. Achieving an efficient and effective global system will depend on active support by stakeholders, and will be aided by continuing to develop the strategies and by supporting the strategies’ recommendations for efficient and effective practices in plant genetic resources.
Biodiversity and Conservation | 2013
Ian K. Dawson; Manuel R. Guariguata; Judy Loo; John C. Weber; Ard Lengkeek; David Bush; Jonathan P. Cornelius; Luigi Guarino; Roeland Kindt; Calleb Orwa; Joanne Russell; Ramni Jamnadass
Smallholders’ agroforests may be valuable for conserving tropical trees through three main mechanisms. First, trees planted and/or retained by farmers in agricultural landscapes where wild stands were once found may be circa situm reservoirs of biodiversity. Second, farmland trees may support conservation in situ by providing an alternative source of product to reduce extraction from forest, and by acting as ‘corridors’ or ‘stepping stones’ that connect fragmented wild stands. Third, the additional value that planting assigns to trees may result in greater interest in including them in seed collections, field trials and field ‘genebanks’ that support ex situ conservation. Here, we critically review the evidence for these mechanisms, and highlight areas for research and for intervention so that agroforestry practices can better support conservation in each setting, with an emphasis on often neglected genetic-level considerations. Based on current global challenges to diversity, conservation will need to rely increasingly on a smallholder-farm circa situm approach, but concerns on long-term effectiveness need to be properly quantified and addressed. Connectivity between widely dispersed, low density trees in agricultural landscapes is an important factor determining the success of the circa situm approach, while improving farmers’ access to a diversity of tree germplasm that they are interested in planting is required. The circumstances in which agroforestry plantings can support in situ conservation need to be better defined, and research on the stability of active tree seed collections (how long are species and populations retained in them?) as ex situ reservoirs of biodiversity is needed.
Genetic Resources and Crop Evolution | 1997
N. Maxted; J. G. Hawkes; Luigi Guarino; M. Sawkins
The signing and ratification of the Convention on Biological Diversity has resulted in increased scientific and public interest in the conservation and utilisation of biological diversity. This has in turn triggered the need to develop more effective methodologies to conserve biological diversity for the benefit of all humanity. One of the first factors to be considered when conserving botanical diversity is the efficient and effective selection of the target taxa. The aim of this paper is not to set detailed priorities for the genetic conservation of the plant genetic resources of any particular crop or species complex, but to draw attention to the factors that should be considered when formulating priorities. The factors that are considered important when selecting plant genetic resource targets are: current conservation status; potential economic use; threat of genetic erosion; genetic distinctiveness; ecogeographic distribution; biological importance; cultural importance; cost, feasibility and sustainability; legislation; ethical and aesthetic considerations; and priorities of the conservation agency undertaking the conservation. Each of these factors is discussed in turn. Although it is not possible to provide a single methodology for the selection of plant genetic resource targets at this time, it is hoped that the consideration the factors discussed will make the selection of target taxa more object, make better use of the limited conservation resources and thus enhance the process of genetic conservation as a whole.
Kew Bulletin | 2010
N. Maxted; S. P. Kell; Álvaro Toledo; Ehsan Dulloo; Vernon H. Heywood; Toby Hodgkin; Danny Hunter; Luigi Guarino; Andy Jarvis; B. V. Ford-Lloyd
SummaryIn light of the growing concern over the potentially devastating impacts on biodiversity and food security of climate change and the massively growing world population, taking action to conserve crop wild relatives (CWR), is no longer an option — it is a priority. Crop wild relatives are species closely related to crops, including their progenitors, many of which have the potential to contribute beneficial traits to crops, such as pest or disease resistance, yield improvement or stability. They are a critical component of plant genetic resources for food and agriculture (PGRFA), have already made major contributions to crop production and are vital for future food security; their systematic conservation in ways that ensure their continuing availability for use is therefore imperative. This is a complex, interdisciplinary, global issue that has been addressed by various national and international initiatives. Drawing on the lessons learnt from these initiatives we can now propose a global approach to CWR conservation, the key elements of which are: (1) estimating global CWR numbers, (2) assessment of the global importance of CWR diversity, (3) current conservation status, (4) threats to CWR diversity, (5) systematic approaches to CWR conservation, (6) CWR informatics, and (7) enhancing the use of CWR diversity.
Genetic Resources and Crop Evolution | 1998
M. E. Dulloo; Luigi Guarino; Florent Engelmann; N. Maxted; John Newbury; Frank Attere; B. V. Ford-Lloyd
No single conservation technique can adequately conserve the full range of genetic diversity of a target species or genepool. To optimize the efficiency of germplasm conservation, a range of conservation techniques needs to be applied simultaneously. In this paper we review the progress made in the application of both in situ and ex situ complementary conservation strategies and techniques to the conservation of the genus Coffea and identify areas where more research work is required. Traditionally, Coffea species have been conserved ex situ as living plants in field genebanks due to their intermediate seed storage behaviour. However, progress made in the field of biotechnology in recent years have made it possible to envisage the use of in vitro, slow growth and cryopreservation for medium- and long-term conservation of Coffea germplasm, respectively. In situ conservation is also an important option for long-term conservation, but there are no genetic reserves specifically set up for conserving Coffea. Protected areas and managed reserves offer the best opportunities for conserving Coffea. A case study for Mascarene Coffea in Mauritius is presented and a strategy for their conservation is discussed.
PLOS ONE | 2013
Ola Tveitereid Westengen; Simon Jeppson; Luigi Guarino
Ex-situ conservation of crop diversity is a global concern, and the development of an efficient and sustainable conservation system is a historic priority recognized in international law and policy. We assess the completeness of the safety duplication collection in the Svalbard Global Seed Vault with respect to data on the worlds ex-situ collections as reported by the Food and Agriculture Organization of the United Nations. Currently, 774,601 samples are deposited at Svalbard by 53 genebanks. We estimate that more than one third of the globally distinct accessions of 156 crop genera stored in genebanks as orthodox seeds are conserved in the Seed Vault. The numbers of safety duplicates of Triticum (wheat), Sorghum (sorghum), Pennisetum (pearl millet), Eleusine (finger millet), Cicer (chickpea) and Lens (lentil) exceed 50% of the estimated numbers of distinct accessions in global ex-situ collections. The number of accessions conserved globally generally reflects importance for food production, but there are significant gaps in the safety collection at Svalbard in some genera of high importance for food security in tropical countries, such as Amaranthus (amaranth), Chenopodium (quinoa), Eragrostis (teff) and Abelmoschus (okra). In the 29 food-crop genera with the largest number of accessions stored globally, an average of 5.5 out of the ten largest collections is already represented in the Seed Vault collection or is covered by existing deposit agreements. The high coverage of ITPGRFA Annex 1 crops and of those crops for which there is a CGIAR mandate in the current Seed Vault collection indicates that existence of international policies and institutions are important determinants for accessions to be safety duplicated at Svalbard. As a back-up site for the global conservation system, the Seed Vault plays not only a practical but also a symbolic role for enhanced integration and cooperation for conservation of crop diversity.