Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luigi Malavolti is active.

Publication


Featured researches published by Luigi Malavolti.


Nature Communications | 2014

Magnetic behaviour of TbPc2 single-molecule magnets chemically grafted on silicon surface

Matteo Mannini; Federico Bertani; Cristina Tudisco; Luigi Malavolti; Lorenzo Poggini; Kasjan Misztal; Daniela Menozzi; Alessandro Motta; Edwige Otero; P. Ohresser; Philippe Sainctavit; Guglielmo G. Condorelli; Enrico Dalcanale; Roberta Sessoli

Single-molecule magnets (SMMs) are among the most promising molecular systems for the development of novel molecular electronics based on the spin transport. Going beyond the investigations focused on physisorbed SMMs, in this work the robust grafting of Terbium(III) bis(phthalocyaninato) complexes to silicon surface from a diluted solution is achieved by rational chemical design yielding the formation of a partially oriented monolayer on the conducting substrate. Here, by exploiting the surface sensitivity of X-ray circular magnetic dichroism we evidence an enhancement of the magnetic bistability of this single-molecule magnet, in contrast to the dramatic reduction of the magnetic hysteresis that characterises monolayer deposits evaporated on noble and ferromagnetic metals. Photoelectron spectroscopy investigations and density functional theory analysis suggest a non-innocent role played by the silicon substrate, evidencing the potentiality of this approach for robust integration of bistable magnetic molecules in electronic devices.


Journal of Materials Chemistry C | 2013

Erratic magnetic hysteresis of TbPc2 molecular nanomagnets

Luigi Malavolti; Matteo Mannini; Pierre-Emmanuel Car; Giulio Campo; Francesco Pineider; Roberta Sessoli

Terbium(III) bis-phthalocyaninato neutral complex, a robust and evaporable Single Molecule Magnet (SMM) with a record height of the anisotropy barrier, has recently attracted a great interest as an active unit in single molecule electronics, but at the same time its magnetic hysteresis has been found to be strongly affected when the environment is different from the crystalline phase. Here we present a systematic investigation of the magnetization dynamics in different environments, obtained by magnetic dilution, thermal treatment and sublimation of the molecules, to shed some light on the origin of the evanescence of the hysteretic behavior of this unique SMM.


Nano Letters | 2015

Magnetic Bistability in a Submonolayer of Sublimated Fe4 Single-Molecule Magnets

Luigi Malavolti; Valeria Lanzilotto; Silviya Ninova; Lorenzo Poggini; Irene Cimatti; Brunetto Cortigiani; Ludovica Margheriti; D. Chiappe; Edwige Otero; Philippe Sainctavit; Federico Totti; Andrea Cornia; Matteo Mannini; Roberta Sessoli

We demonstrate that Fe4 molecules can be deposited on gold by thermal sublimation in ultra-high vacuum with retention of single molecule magnet behavior. A magnetic hysteresis comparable to that found in bulk samples is indeed observed when a submonolayer film is studied by X-ray magnetic circular dichroism. Scanning tunneling microscopy evidences that Fe4 molecules are assembled in a two-dimensional lattice with short-range hexagonal order and coexist with a smaller contaminant. The presence of intact Fe4 molecules and the retention of their bistable magnetic behavior on the gold surface are supported by density functional theory calculations.


Nature Communications | 2015

Magnetic fingerprint of individual Fe4 molecular magnets under compression by a scanning tunnelling microscope

Jacob A. J. Burgess; Luigi Malavolti; Valeria Lanzilotto; Matteo Mannini; Shichao Yan; Silviya Ninova; Federico Totti; Steffen Rolf-Pissarczyk; Andrea Cornia; Roberta Sessoli; Sebastian Loth

Single-molecule magnets (SMMs) present a promising avenue to develop spintronic technologies. Addressing individual molecules with electrical leads in SMM-based spintronic devices remains a ubiquitous challenge: interactions with metallic electrodes can drastically modify the SMMs properties by charge transfer or through changes in the molecular structure. Here, we probe electrical transport through individual Fe4 SMMs using a scanning tunnelling microscope at 0.5 K. Correlation of topographic and spectroscopic information permits identification of the spin excitation fingerprint of intact Fe4 molecules. Building from this, we find that the exchange coupling strength within the molecules magnetic core is significantly enhanced. First-principles calculations support the conclusion that this is the result of confinement of the molecule in the two-contact junction formed by the microscope tip and the sample surface.


Inorganic Chemistry | 2013

Enhanced Vapor-Phase Processing in Fluorinated Fe4 Single-Molecule Magnets

Luca Rigamonti; Marco Piccioli; Luigi Malavolti; Lorenzo Poggini; Matteo Mannini; Federico Totti; Brunetto Cortigiani; Agnese Magnani; Roberta Sessoli; Andrea Cornia

A new tetrairon(III) single-molecule magnet with enhanced volatility and processability was obtained by partial fluorination of the ancillary β-diketonato ligands. Fluorinated proligand Hpta = pivaloyltrifluoroacetone was used to assemble the bis(alkoxido)-bridged dimer [Fe2(OEt)2(pta)4] (1) in crystalline form, from which the new tetranuclear complex [Fe4(L)2(pta)6] (2) was synthesized in a one-pot reaction with H3L = 2-hydroxymethyl-2-phenylpropane-1,3-diol, NaOEt, and FeCl3 in a Et2O:EtOH solvent mixture. The structure of compound 2 was inferred from (1)H NMR, mass spectrometry, magnetic measurements, and DFT calculations. Direct current magnetic data are consistent with the expected metal-centered triangular topology for the iron(III) ions, with an antiferromagnetic coupling constant J = 16.20(6) cm(-1) between the central iron and the peripheral ones and consequent stabilization of an S = 5 spin ground state. Alternating current (ac) susceptibility measurements in 0 and 1 kOe static applied fields show the presence of a thermally activated process for magnetic relaxation, with τ0 = 2.3(1) 10(-7) s and U(eff)/kB = 9.9(1) K at zero static field and τ0 = 2.0(2) 10(-7) s and U(eff)/kB = 13.0(2) K at 1 kOe. At a pressure of 10(-7) mbar, compound 2 sublimates at (440 ± 5) K vs (500 ± 10) K for the nonfluorinated variant [Fe4(L)2(dpm)6] (Hdpm = dipivaloylmethane). According to XPS, ToF-SIMS, and ac susceptibility studies, the chemical composition, fragmentation pattern, and slow magnetic relaxation of the pristine material are retained in sublimated samples, suggesting that the molecular structure remains totally unaffected upon vapor-phase processing.


Journal of Materials Chemistry C | 2014

Valence electronic structure of sublimated Fe4 single-molecule magnets: an experimental and theoretical characterization

Silviya Ninova; Valeria Lanzilotto; Luigi Malavolti; Luca Rigamonti; Brunetto Cortigiani; Matteo Mannini; Federico Totti; Roberta Sessoli

The valence electronic structures of two single-molecule magnets (SMMs), [Fe4(L)2(dpm)6] and [Fe4(L)2(pta)6], (Hdpm = dipivaloylmethane, Hpta = pivaloyltrifluoroacetone, L3− = Ph–C(CH2O)33−), are investigated by means of ultraviolet photoemission spectroscopy (UPS) and ab initio calculations. The experimental UPS spectra of both compounds are analysed and compared with the total density of states (TDOS) computed with the hybrid functional PBE0. The substitution of half of the methyl groups in [Fe4(L)2(dpm)6] with fluorine atoms in [Fe4(L)2(pta)6] unexpectedly affects the spectrum shape in the Fermi region, thus becoming a useful fingerprint of the two SMMs. Moreover, a computational protocol at DFT + U level of theory is assessed on both compounds, which is in good agreement with the experimental spectroscopic and magnetic data. The basis for the future modelling of the adsorption of Fe4 clusters on surfaces is established.


Science Advances | 2017

Nonlocally sensing the magnetic states of nanoscale antiferromagnets with an atomic spin sensor

Shichao Yan; Luigi Malavolti; Jacob A. J. Burgess; Andrea Droghetti; Angel Rubio; Sebastian Loth

A three-atom spin chain can sense the magnetic states of nano-antiferromagnets with micro–electron volt sensitivity. The ability to sense the magnetic state of individual magnetic nano-objects is a key capability for powerful applications ranging from readout of ultradense magnetic memory to the measurement of spins in complex structures with nanometer precision. Magnetic nano-objects require extremely sensitive sensors and detection methods. We create an atomic spin sensor consisting of three Fe atoms and show that it can detect nanoscale antiferromagnets through minute, surface-mediated magnetic interaction. Coupling, even to an object with no net spin and having vanishing dipolar stray field, modifies the transition matrix element between two spin states of the Fe atom–based spin sensor that changes the sensor’s spin relaxation time. The sensor can detect nanoscale antiferromagnets at up to a 3-nm distance and achieves an energy resolution of 10 μeV, surpassing the thermal limit of conventional scanning probe spectroscopy. This scheme permits simultaneous sensing of multiple antiferromagnets with a single-spin sensor integrated onto the surface.


Beilstein Journal of Nanotechnology | 2014

UHV deposition and characterization of a mononuclear iron(III) β-diketonate complex on Au(111)

Irene Cimatti; Silviya Ninova; Valeria Lanzilotto; Luigi Malavolti; Luca Rigamonti; Brunetto Cortigiani; Matteo Mannini; Elena Magnano; Federica Bondino; Federico Totti; Andrea Cornia; Roberta Sessoli

Summary The adsorption of the sterically hindered β-diketonate complex Fe(dpm)3, where Hdpm = dipivaloylmethane, on Au(111) was investigated by ultraviolet photoelectron spectroscopy (UPS) and scanning tunnelling microscopy (STM). The high volatility of the molecule limited the growth of the film to a few monolayers. While UPS evidenced the presence of the β-diketonate ligands on the surface, the integrity of the molecule on the surface could not be assessed. The low temperature STM images were more informative and at submonolayer coverage they showed the presence of regular domains characterized by a flat morphology and height of ≈0.3 nm. Along with these domains, tetra-lobed features adsorbed on the kinks of the herringbone were also observed. DFT-simulated images of the pristine molecule and its possible decomposition products allowed to assess the partial fragmentation of Fe(dpm)3 upon adsorption on the Au(111) surface. Structural features with intact molecules were only observed for the saturation coverage. An ex situ prepared thick film of the complex was also investigated by X-ray magnetic circular dichroism (XMCD) and features typical of high-spin iron(III) in octahedral environment were observed.


Nanoscale | 2018

Magnetic bistability of TbPc2 submonolayer on a graphene/SiC(0001) conductive electrode

Giulia Serrano; Emilio Vélez-Fort; Irene Cimatti; Brunetto Cortigiani; Luigi Malavolti; Davide Betto; Abdelkarim Ouerghi; Nicholas B. Brookes; Matteo Mannini; Roberta Sessoli

The alteration of the properties of single-molecule magnets (SMMs) due to the interaction with metallic electrodes is detrimental to their employment in spintronic devices. Conversely, herein we show that the terbium(iii) bis-phthalocyaninato complex, TbPc2, maintains its SMM behavior up to 9 K on a graphene/SiC(0001) substrate, making this alternative conductive layer highly promising for molecular spintronic applications.


Chemical Communications | 2013

Magnetism of TbPc2 SMMs on ferromagnetic electrodes used in organic spintronics

Luigi Malavolti; Lorenzo Poggini; Ludovica Margheriti; D. Chiappe; Patrizio Graziosi; Brunetto Cortigiani; Valeria Lanzilotto; F. Buatier de Mongeot; P. Ohresser; Edwige Otero; F. Choueikani; Ph. Sainctavit; I. Bergenti; V. Dediu; Matteo Mannini; Roberta Sessoli

Collaboration


Dive into the Luigi Malavolti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Cornia

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge