Luigi Marchionni
Johns Hopkins University School of Medicine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Luigi Marchionni.
Cancer Research | 2009
Vincent C. Daniel; Luigi Marchionni; Jared S. Hierman; Jonathan T. Rhodes; Wendy Devereux; Charles M. Rudin; Rex Yung; Giovanni Parmigiani; Marion Dorsch; Craig D. Peacock; D. Neil Watkins
Traditional approaches to the preclinical investigation of cancer therapies rely on the use of established cell lines maintained in serum-based growth media. This is particularly true of small-cell lung cancer (SCLC), where surgically resected tissue is rarely available. Recent attention has focused on the need for better models that preserve the integrity of cancer stem cell populations, as well as three-dimensional tumor-stromal interactions. Here we describe a primary xenograft model of SCLC in which endobronchial tumor specimens obtained from chemo-naive patients are serially propagated in vivo in immunodeficient mice. In parallel, cell lines grown in conventional tissue culture conditions were derived from each xenograft line, passaged for 6 months, and then reimplanted to generate secondary xenografts. Using the Affymetrix platform, we analyzed gene expression in primary xenograft, xenograft-derived cell line, and secondary xenograft, and compared these data to similar analyses of unrelated primary SCLC samples and laboratory models. When compared with normal lung, primary tumors, xenografts, and cell lines displayed a gene expression signature specific for SCLC. Comparison of gene expression within the xenograft model identified a group of tumor-specific genes expressed in primary SCLC and xenografts that was lost during the transition to tissue culture and that was not regained when the tumors were reestablished as secondary xenografts. Such changes in gene expression may be a common feature of many cancer cell culture systems, with functional implications for the use of such models for preclinical drug development.
American Journal of Pathology | 2011
Daniela Cesselli; Antonio Paolo Beltrami; Federica D'Aurizio; Patrizia Marcon; Natascha Bergamin; Barbara Toffoletto; Maura Pandolfi; Elisa Puppato; Laura Marino; Sergio Signore; Ugolino Livi; Roberto Verardo; Silvano Piazza; Luigi Marchionni; Claudia Fiorini; Claudio Schneider; Toru Hosoda; Marcello Rota; Jan Kajstura; Piero Anversa; Carlo Alberto Beltrami; Annarosa Leri
Currently, it is unknown whether defects in stem cell growth and differentiation contribute to myocardial aging and chronic heart failure (CHF), and whether a compartment of functional human cardiac stem cells (hCSCs) persists in the decompensated heart. To determine whether aging and CHF are critical determinants of the loss in growth reserve of the heart, the properties of hCSCs were evaluated in 18 control and 23 explanted hearts. Age and CHF showed a progressive decrease in functionally competent hCSCs. Chronological age was a major predictor of five biomarkers of hCSC senescence: telomeric shortening, attenuated telomerase activity, telomere dysfunction-induced foci, and p21(Cip1) and p16(INK4a) expression. CHF had similar consequences for hCSCs, suggesting that defects in the balance between cardiomyocyte mass and the pool of nonsenescent hCSCs may condition the evolution of the decompensated myopathy. A correlation was found previously between telomere length in circulating bone marrow cells and cardiovascular diseases, but that analysis was restricted to average telomere length in a cell population, neglecting the fact that telomere attrition does not occur uniformly in all cells. The present study provides the first demonstration that dysfunctional telomeres in hCSCs are biomarkers of aging and heart failure. The biomarkers of cellular senescence identified here can be used to define the birth date of hCSCs and to sort young cells with potential therapeutic efficacy.
Science Translational Medicine | 2011
Hua Liu; Yonghak Kim; Saul J. Sharkis; Luigi Marchionni; Yoon Young Jang
Hepatic cells derived from human induced pluripotent stem cells of various origins contribute to liver regeneration in vivo. Treating Liver Disease, A Promethean Task As the ancient Greek legend of the disgraced Prometheus showed, the only human organ that can regenerate itself is the liver. Despite the liver’s remarkable capacity for repair and regeneration, diseases such as liver cirrhosis or hepatocellular carcinoma eventually destroy this ability and the only option is for patients to receive a liver transplant. But there is a severe shortage of donor livers for transplantation, which has prompted interest in stem cell therapy for treating patients with end-stage liver disease. However, liver stem cells are difficult to isolate and expand in culture so alternatives are being sought. Enter Liu et al. with a stem cell strategy that involves deriving mature human liver cells (hepatocytes) from human induced pluripotent stem cells (iPSCs). First, these investigators generated human iPSCs from a variety of adult human cells including hepatocytes, fibroblasts, and keratinocytes and showed that although these iPSCs were derived from very different cell types, they retained similar (although not identical) epigenetic signatures. The authors then used an established stepwise differentiation protocol to induce these human iPSCs to differentiate along the hepatic lineage first into definitive endoderm, then hepatic progenitor cells, and finally into mature hepatocyte-like cells. They found that, regardless of their origin, the different human iPSC lines all showed the same ability to differentiate into hepatic cells. To be useful for cell therapy, these human iPSC-derived hepatic cells must be able to engraft in liver tissue and function in the same way as normal human hepatocytes. So, the authors tested their human iPSC-derived hepatic cells (at different stages of differentiation) for their ability to engraft liver tissue in a xenograft model comprising immunodeficient mice treated with a chemical to induce liver injury. They intravenously infused the mice with 2 million human iPSC-derived hepatic cells or with normal human hepatocytes as a control. They found that human iPSC-derived hepatic cells engrafted mouse liver with an efficiency ranging from 8 to 15%, comparable to that for adult human hepatocytes (~11%). But were the engrafted human hepatic cells functional? The authors report that proteins normally secreted by adult human hepatocytes, such as albumin, transferrin, α-1-antitrypsin, and fibrinogen, could be detected in the serum of mice transplanted with human iPSC-derived hepatic cells at concentrations of 46, 101, 8.1, and 1100 ng/ml, respectively. Although preliminary, these encouraging findings suggest that it may be possible in the future to use infusions of human iPSC-derived hepatic cells to rescue injured liver tissue in patients with end-stage liver disease. Human induced pluripotent stem cells (iPSCs) are a potential source of hepatocytes for liver transplantation to treat end-stage liver disease. In vitro differentiation of human iPSCs into hepatic cells has been achieved using a multistage differentiation protocol, but whether these cells are functional and capable of engrafting and regenerating diseased liver tissue is not clear. We show that human iPSC-derived hepatic cells at various differentiation stages can engraft the liver in a mouse transplantation model. Using the same differentiation and transplantation protocols, we also assessed the ability of human iPSCs derived from each of the three developmental germ layer tissues (that is, ectoderm, mesoderm, and endoderm) to regenerate mouse liver. These iPSC lines, with similar but distinct global DNA methylation patterns, differentiated into multistage hepatic cells with an efficiency similar to that of human embryonic stem cells. Human hepatic cells at various differentiation stages derived from iPSC lines of different origins successfully repopulated the liver tissue of mice with liver cirrhosis. They also secreted human-specific liver proteins into mouse blood at concentrations comparable to that of proteins secreted by human primary hepatocytes. Our results demonstrate the engraftment and liver regenerative capabilities of human iPSC-derived multistage hepatic cells in vivo and suggest that human iPSCs of distinct origins and regardless of their parental epigenetic memory can efficiently differentiate along the hepatic lineage.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Cristian Tomasetti; Luigi Marchionni; Martin A. Nowak; Giovanni Parmigiani; Bert Vogelstein
Significance The number of driver events required for human tumorigenesis has remained one of the fundamental issues in cancer research since the seminal studies of Armitage and Doll. This question has become even more important with the recent genome-wide sequencing studies of cancer, whose major goal is the identification of the driver genes responsible for tumor initiation and progression. By using a novel approach that combines conventional epidemiologic studies with genome-wide sequencing data, we show that only three sequential mutations are required to develop lung and colon adenocarcinomas, a number that is lower than what is typically thought to be required for the formation of cancers of these and other organs. This finding has important implications for the design of future cancer genome-sequencing efforts. Cancer arises through the sequential accumulation of mutations in oncogenes and tumor suppressor genes. However, how many such mutations are required for a normal human cell to progress to an advanced cancer? The best estimates for this number have been provided by mathematical models based on the relation between age and incidence. For example, the classic studies of Nordling [Nordling CO (1953) Br J Cancer 7(1):68–72] and Armitage and Doll [Armitage P, Doll R (1954) Br J Cancer 8(1):1–12] suggest that six or seven sequential mutations are required. Here, we describe a different approach to derive this estimate that combines conventional epidemiologic studies with genome-wide sequencing data: incidence data for different groups of patients with the same cancer type were compared with respect to their somatic mutation rates. In two well-documented cancer types (lung and colon adenocarcinomas), we find that only three sequential mutations are required to develop cancer. This conclusion deepens our understanding of the process of carcinogenesis and has important implications for the design of future cancer genome-sequencing efforts.
Oncogene | 2008
Edward M. Schaeffer; Luigi Marchionni; Zhenhua Huang; Brian W. Simons; A. Blackman; Wayne Yu; Giovanni Parmigiani; David M. Berman
Cancer cells differentiate along specific lineages that largely determine their clinical and biologic behavior. Distinct cancer phenotypes from different cells and organs likely result from unique gene expression repertoires established in the embryo and maintained after malignant transformation. We used comprehensive gene expression analysis to examine this concept in the prostate, an organ with a tractable developmental program and a high propensity for cancer. We focused on gene expression in the murine prostate rudiment at three time points during the first 48 h of exposure to androgen, which initiates proliferation and invasion of prostate epithelial buds into surrounding urogenital sinus mesenchyme. Here, we show that androgen exposure regulates genes previously implicated in prostate carcinogenesis comprising pathways for the phosphatase and tensin homolog (PTEN), fibroblast growth factor (FGF)/mitogen-activated protein kinase (MAPK), and Wnt signaling along with cellular programs regulating such ‘hallmarks’ of cancer as angiogenesis, apoptosis, migration and proliferation. We found statistically significant evidence for novel androgen-induced gene regulation events that establish and/or maintain prostate cell fate. These include modulation of gene expression through microRNAs, expression of specific transcription factors, and regulation of their predicted targets. By querying public gene expression databases from other tissues, we found that rather than generally characterizing androgen exposure or epithelial budding, the early prostate development program more closely resembles the program for human prostate cancer. Most importantly, early androgen-regulated genes and functional themes associated with prostate development were highly enriched in contrasts between increasingly lethal forms of prostate cancer, confirming a ‘reactivation’ of embryonic pathways for proliferation and invasion in prostate cancer progression. Among the genes with the most significant links to the development and cancer, we highlight coordinate induction of the transcription factor Sox9 and suppression of the proapoptotic phospholipid-binding protein Annexin A1 that link early prostate development to early prostate carcinogenesis. These results credential early prostate development as a reliable and valid model system for the investigation of genes and pathways that drive prostate cancer.
Blood | 2010
Kimberly Noonan; Luigi Marchionni; Judy Anderson; Drew M. Pardoll; G. David Roodman; Ivan Borrello
Osteoclast (OC)-mediated lytic bone disease remains a cause of major morbidity in multiple myeloma. Here we demonstrate the critical role of interleukin-17-producing marrow infiltrating lymphocytes (MILs) in OC activation and development of bone lesions in myeloma patients. Unlike MILs from normal bone marrow, myeloma MILs possess few regulatory T cells (Tregs) and demonstrate an interleukin-17 phenotype that enhances OC activation. In univariate analyses of factors mediating bone destruction, levels of cytokines that selectively induce and maintain the Th17 phenotype tightly correlated with the extent of bone disease in myeloma. In contrast, MILs activated under conditions that skew toward a Th1 phenotype significantly reduced formation of mature OC. These findings demonstrate that interleukin-17 T cells are critical to the genesis of myeloma bone disease and that immunologic manipulations shifting MILs from a Th17 to a Th1 phenotype may profoundly diminish lytic bone lesions in multiple myeloma.
PLOS ONE | 2010
Sushant K. Kachhap; Nadine Rosmus; Spencer J. Collis; Madeleine S. Q. Kortenhorst; Michel D. Wissing; Mohammad Hedayati; Shabana Shabbeer; Janet Mendonca; Justin Deangelis; Luigi Marchionni; Jianqing Lin; Naseruddin Höti; Johan W.R. Nortier; Theodore L. DeWeese; Hans J. Hammers; Michael A. Carducci
Background Histone deacetylase inhibitors (HDACis) re-express silenced tumor suppressor genes and are currently undergoing clinical trials. Although HDACis have been known to induce gene expression, an equal number of genes are downregulated upon HDAC inhibition. The mechanism behind this downregulation remains unclear. Here we provide evidence that several DNA repair genes are downregulated by HDAC inhibition and provide a mechanism involving the E2F1 transcription factor in the process. Methodology/Principal Findings Applying Analysis of Functional Annotation (AFA) on microarray data of prostate cancer cells treated with HDACis, we found a number of genes of the DNA damage response and repair pathways are downregulated by HDACis. AFA revealed enrichment of homologous recombination (HR) DNA repair genes of the BRCA1 pathway, as well as genes regulated by the E2F1 transcription factor. Prostate cancer cells demonstrated a decreased DNA repair capacity and an increased sensitization to chemical- and radio-DNA damaging agents upon HDAC inhibition. Recruitment of key HR repair proteins to the site of DNA damage, as well as HR repair capacity was compromised upon HDACi treatment. Based on our AFA data, we hypothesized that the E2F transcription factors may play a role in the downregulation of key repair genes upon HDAC inhibition in prostate cancer cells. ChIP analysis and luciferase assays reveal that the downregulation of key repair genes is mediated through decreased recruitment of the E2F1 transcription factor and not through active repression by repressive E2Fs. Conclusions/Significance Our study indicates that several genes in the DNA repair pathway are affected upon HDAC inhibition. Downregulation of the repair genes is on account of a decrease in amount and promoter recruitment of the E2F1 transcription factor. Since HDAC inhibition affects several pathways that could potentially have an impact on DNA repair, compromised DNA repair upon HDAC inhibition could also be attributed to several other pathways besides the ones investigated in this study. However, our study does provide insights into the mechanism that governs downregulation of HR DNA repair genes upon HDAC inhibition, which can lead to rationale usage of HDACis in the clinics.
Stem Cells | 2009
Xiaobing He; Luigi Marchionni; Donna E. Hansel; Wayne Yu; Akshay Sood; Jie Yang; Giovanni Parmigiani; William Matsui; David M. Berman
Highly tumorigenic cancer cell (HTC) populations have been identified for a variety of solid tumors and assigned stem cell properties. Strategies for identifying HTCs in solid tumors have been primarily empirical rather than rational, particularly in epithelial tumors, which are responsible for 80% of cancer deaths. We report evidence for a spatially restricted bladder epithelial (urothelial) differentiation program in primary urothelial cancers (UCs) and in UC xenografts. We identified a highly tumorigenic UC cell compartment that resembles benign urothelial stem cells (basal cells), co‐expresses the 67‐kDa laminin receptor and the basal cell‐specific cytokeratin CK17, and lacks the carcinoembryonic antigen family member CEACAM6 (CD66c). This multipotent compartment resides at the tumor‐stroma interface, is easily identified on histologic sections, and possesses most, if not all, of the engraftable tumor‐forming ability in the parental xenograft. We analyzed differential expression of genes and pathways in basal‐like cells versus more differentiated cells. Among these, we found significant enrichment of pathways comprising “hallmarks” of cancer, and pharmacologically targetable signaling pathways, including Janus kinase‐signal transducer and activator of transcription, Notch, focal adhesion, mammalian target of rapamycin, epidermal growth factor receptor (erythroblastic leukemia viral oncogene homolog [ErbB]), and wingless‐type MMTV integration site family (Wnt). The basal/HTC gene expression signature was essentially invisible within the context of nontumorigenic cell gene expression and overlapped significantly with genes driving progression and death in primary human UC. The spatially restricted epithelial differentiation program described here represents a conceptual advance in understanding cellular heterogeneity of carcinomas and identifies basal‐like HTCs as attractive targets for cancer therapy. STEM CELLS 2009;27:1487–1495
Clinical Cancer Research | 2010
Karisa C. Schreck; Pete Taylor; Luigi Marchionni; Vidya Gopalakrishnan; Eli E. Bar; Nicholas Gaiano; Charles G. Eberhart
Purpose: Multiple developmental pathways including Notch, Hedgehog, and Wnt are active in malignant brain tumors such as medulloblastoma and glioblastoma (GBM). This raises the possibility that tumors might compensate for therapy directed against one pathway by upregulating a different one. We investigated whether brain tumors show resistance to therapies against Notch, and whether targeting multiple pathways simultaneously would kill brain tumor cells more effectively than monotherapy. Experimental Design: We used GBM neurosphere lines to investigate the effects of a gamma-secretase inhibitor (MRK-003) on tumor growth, and chromatin immunoprecipitation to study the regulation of other genes by Notch targets. We also evaluated the effect of combined therapy with a Hedgehog inhibitor (cyclopamine) in GBM and medulloblastoma lines, and in primary human GBM cultures. Results: GBM cells are at least partially resistant to long-term MRK-003 treatment, despite ongoing Notch pathway suppression, and show concomitant upregulation of Wnt and Hedgehog activity. The Notch target Hes1, a repressive transcription factor, bound the Gli1 first intron, and may inhibit its expression. Similar results were observed in a melanoma-derived cell line. Targeting Notch and Hedgehog simultaneously induced apoptosis, decreased cell growth, and inhibited colony-forming ability more dramatically than monotherapy. Low-passage neurospheres isolated from freshly resected human GBMs were also highly susceptible to coinhibition of the two pathways, indicating that targeting multiple developmental pathways can be more effective than monotherapy at eliminating GBM-derived cells. Conclusions: Notch may directly suppress Hedgehog via Hes1 mediated inhibition of Gli1 transcription, and targeting both pathways simultaneously may be more effective at eliminating GBMs cells. Clin Cancer Res; 16(24); 6060–70. ©2010 AACR.
Oncogene | 2004
Loris De Cecco; Luigi Marchionni; Manuela Gariboldi; James Francis Reid; M. Stefania Lagonigro; Stefano Caramuta; Cristina Ferrario; Erica Bussani; Delia Mezzanzanica; Fabio Turatti; Domenico Delia; Maria Grazia Daidone; Maria Oggionni; Norma Bertuletti; Antonino Ditto; Francesco Raspagliesi; Silvana Pilotti; Marco A. Pierotti; Silvana Canevari; Claudio Schneider
Epithelial ovarian cancer (EOC) is the gynecological disease with the highest death rate. We applied an automatic class discovery procedure based on gene expression profiling to stages III–IV tumors to search for molecular signatures associated with the biological properties and progression of EOC. Using a complementary DNA microarray containing 4451 cancer-related, sequence-verified features, we identified a subset of EOC characterized by the expression of numerous genes related to the extracellular matrix (ECM) and its remodeling, along with elements of the fibroblast growth factor 2 (FGF2) signaling pathway. A total of 10 genes were validated by quantitative real-time polymerase chain reaction, and coexpression of FGF2 and fibroblast growth factor receptor 4 in tumor cells was revealed by immunohistochemistry, confirming the reliability of gene expression by cDNA microarray. Since the functional relationships among these genes clearly suggested involvement of the identified molecular signature in processes related to epithelial–stromal interactions and/or epithelial–mesenchymal cellular plasticity, we applied supervised learning analysis on ovarian-derived cell lines showing distinct cellular phenotypes in culture. This procedure enabled construction of a gene classifier able to discriminate mesenchymal-like from epithelial-like cells. Genes overexpressed in mesenchymal-like cells proved to match the FGF2 signaling and ECM molecular signature, as identified by unsupervised class discovery on advanced tumor samples. In vitro functional analysis of the cell plasticity classifier was carried out using two isogenic and immortalized cell lines derived from ovarian surface epithelium and displaying mesenchymal and epithelial morphology, respectively. The results indicated the autocrine, but not intracrine stimulation of mesenchymal conversion and cohort/scatter migration of cells by FGF2, suggesting a central role for FGF2 signaling in the maintenance of cellular plasticity of ovary-derived cells throughout the carcinogenesis process. These findings raise mechanistic hypotheses on EOC pathogenesis and progression that might provide a rational underpinning for new therapeutic modalities.