Luigi Ponti
ENEA
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Luigi Ponti.
Agricultural and Forest Entomology | 2007
Luigi Ponti; Miguel A. Altieri; A. P. Gutierrez
1 The effects of intercropping via competition on crop yields, pest [cabbage aphid Brevicoryne brassicae (L.)] abundance, and natural enemy efficacy were studied in the Brassica oleracea L. var. italica system.
Biological Invasions | 2010
A. P. Gutierrez; Nicholas J. Mills; Luigi Ponti
The highly polyphagous light brown apple moth (LBAM) (Epiphyas postvittana (Walk.): Tortricidae) is indigenous to Australia and was first found in California in 2006. It is currently found in 15 coastal counties in California, but nowhere has it reached outbreak status. The USDA projects the geographic range of LBAM will include much of Arizona and California and the southern half of the US, which together with economic estimates of potential crop losses have been used as the rationale for an eradication program in California. We report a temperature-driven demographic model to predict the likely distribution and relative abundance of LBAM using the detailed biology reported by Danthanarayana and colleagues, and climate data from 151 locations in California and Arizona for the period 1995–2006. The predictions of our model suggest that the near coastal regions of California are most favorable for LBAM, the northern Central Valley of California being less favorable, and the desert regions of Arizona and California being unfavorable. The model also predicts that LBAM populations can develop at two of the hottest locations in SE Australia where it is has long been known to occur. This reassessment of the potential distribution of LBAM in California and Arizona suggests that its likely ecological and economic impacts would be less than previously assessed by USDA and that its current pest status warrants re-evaluation.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Luigi Ponti; A. P. Gutierrez; Paolo Michele Ruti; A. Dell'Aquila
Significance Inability to determine reliably the direction and magnitude of change in natural and agro-ecosystems due to climate change poses considerable challenge to their management. Olive is an ancient ubiquitous crop having considerable ecological and socioeconomic importance in the Mediterranean Basin. We assess the ecological and economic impact of projected 1.8 °C climate warming on olive and its obligate pest, the olive fly. This level of climate warming will have varying impact on olive yield and fly infestation levels across the Mediterranean Basin, and result in economic winners and losers. The analysis predicts areas of decreased profitability that will increase the risk of abandonment of small farms in marginal areas critical to soil and biodiversity conservation and to fire risk reduction. The Mediterranean Basin is a climate and biodiversity hot spot, and climate change threatens agro-ecosystems such as olive, an ancient drought-tolerant crop of considerable ecological and socioeconomic importance. Climate change will impact the interactions of olive and the obligate olive fruit fly (Bactrocera oleae), and alter the economics of olive culture across the Basin. We estimate the effects of climate change on the dynamics and interaction of olive and the fly using physiologically based demographic models in a geographic information system context as driven by daily climate change scenario weather. A regional climate model that includes fine-scale representation of the effects of topography and the influence of the Mediterranean Sea on regional climate was used to scale the global climate data. The system model for olive/olive fly was used as the production function in our economic analysis, replacing the commonly used production-damage control function. Climate warming will affect olive yield and fly infestation levels across the Basin, resulting in economic winners and losers at the local and regional scales. At the local scale, profitability of small olive farms in many marginal areas of Europe and elsewhere in the Basin will decrease, leading to increased abandonment. These marginal farms are critical to conserving soil, maintaining biodiversity, and reducing fire risk in these areas. Our fine-scale bioeconomic approach provides a realistic prototype for assessing climate change impacts in other Mediterranean agro-ecosystems facing extant and new invasive pests.
Agricultural and Forest Entomology | 2012
A. P. Gutierrez; Luigi Ponti; Monica L. Cooper; Gianni Gilioli; Johann Baumgärtner; Carlo Duso
1 The polyphagous European grapevine moth Lobesia botrana (Den. & Schiff.) is the principal native pest of grape berries in the Palearctic region. It was found in Napa County, California, in 2009, and it has subsequently been recorded in an additional nine counties, despite an ongoing eradication programme. The present study aimed to assess prospectively its potential geographical distribution and relative abundance in California and the continental U.S.A. A subsidiary goal was to provide explanation for timing control measures. 2 Data from the European literature were used to formulate and parameterize a holistic physiologically‐based demographic model for L. botrana. This model was linked to an extant mechanistic model of grapevine phenology, growth and development that provides the bottom‐up effects of fruiting phenology, age and abundance on L. botrana dynamics. Fruit age affects larval developmental rates, and has carryover effects on pupal development and adult fecundity. Also included in the model were the effects of temperature on developmental, survival and fecundity rates. 3 Observed daily weather data were used to simulate the potential distribution of the moth in California, and the continental U.S.A. The relative total number of pupae per vine per year was used as the metric of favourability at all locations. The simulation data were mapped using grass gis (http://grass.osgeo.org/). 4 The model predicts L. botrana can spread statewide with the highest populations expected in the hotter regions of southern California and the lower half of the Central Valley. In the U.S.A., areas of highest favourability include south Texas, and much of the southeast U.S.A. 5 The effects of a warmer climate on pest abundance were explored by increasing observed mean temperatures 2° and 3 °C. L. botrana abundance is expected to increase in northern California and in the agriculturally rich Central Valley but to decrease in the hot deserts of southern California where summer temperatures would approach its upper thermal limit. 6 Analysis of the timing of mating disruption pheromone for control of L. botrana suggests the greatest benefit would accrue by targeting adults emerging from winter diapause pupae and the flight of first summer adults.
International Journal of Biodiversity Science & Management | 2005
Miguel A. Altieri; Luigi Ponti; Clara I. Nicholls
We present the results of our studies in organic vineyards in Mendocino and Sonoma Counties, California, in an effort to systematize the emerging lessons from our experience on vineyard biodiversity enhancement for ecologically-based pest management. In the Mendocino study, a vegetational corridor connected to a riparian forest channelled insect biodiversity from surrounding habitats into the vineyard, thus overcoming the restricted spatial limits to which the positive influence of adjacent vegetation on vineyard pest dynamics is usually confined. In addition, summer cover crops substantially enhanced biological control of leafhoppers and thrips, by breaking the virtual monoculture that vineyards become in the summer after winter cover crops dry out or are ploughed under. In the Sonoma vineyard, an island of flowering shrubs and herbs provided season-long flower resources and alternate preys/hosts for natural enemies, which slowly built up in the adjacent vineyard. The island acted as a push-pull system for natural enemies, enhancing their activity but confining them mostly to the adjacent vine rows. Planting strips of summer cover crops could be a strategy to overcome the push effect of the island.
Progress in Physical Geography | 2015
Duccio Rocchini; Verónica Andreo; Michael Förster; Carol X. Garzon-Lopez; Andrew Paul Gutierrez; Thomas W. Gillespie; Heidi C. Hauffe; Kate S. He; Birgit Kleinschmit; Paola Mairota; Matteo Marcantonio; Markus Metz; Harini Nagendra; Sajid Pareeth; Luigi Ponti; Carlo Ricotta; Annapaola Rizzoli; Gertrud Schaab; Roberto Zorer; Markus Neteler
Understanding the causes and effects of species invasions is a priority in ecology and conservation biology. One of the crucial steps in evaluating the impact of invasive species is to map changes in their actual and potential distribution and relative abundance across a wide region over an appropriate time span. While direct and indirect remote sensing approaches have long been used to assess the invasion of plant species, the distribution of invasive animals is mainly based on indirect methods that rely on environmental proxies of conditions suitable for colonization by a particular species. The aim of this article is to review recent efforts in the predictive modelling of the spread of both plant and animal invasive species using remote sensing, and to stimulate debate on the potential use of remote sensing in biological invasion monitoring and forecasting. Specifically, the challenges and drawbacks of remote sensing techniques are discussed in relation to: i) developing species distribution models, and ii) studying life cycle changes and phenological variations. Finally, the paper addresses the open challenges and pitfalls of remote sensing for biological invasion studies including sensor characteristics, upscaling and downscaling in species distribution models, and uncertainty of results.
Environmental Entomology | 2013
A. P. Gutierrez; Luigi Ponti
ABSTRACT Published bi- and tri-trophic physiologically based demographic system models having similar sub components are used to assess prospectively the geographic distributions and relative abundance (a measure of invasiveness) of six invasive herbivorous insect species across the United States and Mexico. The plant hosts and insect species included in the study are: 1) cotton/pink bollworm, 2) a fruit tree host/Mediterranean fruit fly, 3) olive/olive fly, 4) a perennial host/light brown apple moth, 5) grapevine/glassy-winged sharpshooter and its two egg parasitoids, and 6) grapevine/European grapevine moth. All of these species are currently or have been targets for eradication. The goal of the analyses is to predict and explain prospectively the disparate distributions of the six species as a basis for examining eradication or containment efforts against them. The eradication of the new world screwworm is also reviewed in the discussion section because of its pivotal role in the development of the eradication paradigm. The models used are mechanistic descriptions of the weather driven biology of the species. Observed daily weather data (i.e., max-min temperatures, solar radiation) from 1,221 locations across the United States and Mexico for the period 1983–2003 were used to drive the models. Soil moisture and nutrition were assumed nonlimiting. The simulation results were mapped using GRASS GIS. The mathematical underpinnings of the modeling approach are reviewed in the appendix and in the supplemental materials.
Bulletin of Science, Technology & Society | 2009
A. P. Gutierrez; Luigi Ponti
The use of marginal land (ML) for lignocellulosic biofuel production is examined for system stability, resilience, and eco-social sustainability. A North American prairie grass system and its industrialization for maximum biomass production using biotechnology and agro-technical inputs is the focus of the analysis. Demographic models of ML biomass production and ethanol farmer/producers are used to examine the stability properties of the ML system. A bio-economic model that maximizes the utility of consumption having the dynamics of MLs and the farmer/producers as dynamic constraints is used to examine the effects of increased conversion efficiency, input costs, risk, and levels of base resources and inputs on the competitive and societal solutions for biomass production. We posit ML abandonment after biofuel production ceases could lead to permanent land degradation below initial levels that prohibit the establishment of the original flora and fauna.
Environmental Entomology | 2011
A. P. Gutierrez; Luigi Ponti; Mark S. Hoddle; Rodrigo P. P. Almeida; Nicola A. Irvin
ABSTRACT The capacity to predict the geographic distribution and relative abundance of invasive species is pivotal to developing policy for eradication or control and management. Commonly used methods fall under the ambit of ecological niche models (ENMs). These methods were reviewed and shortcomings identified. Weather-driven physiologically based demographic models (PBDMs) are proposed that resolve many of the deficiencies of ENMs. The PBDM approach is used to analyze the invasiveness of the polyphagous glassy-winged sharpshooter (Homalodisca vitripennis [Germar]), a pest native to the southeastern United States and northeastern Mexico that extended its range into California in 1989. Glassy-winged sharpshooter vectors the pathogenic bacterium, Xylella fastidiosa (Wells) that causes Pierces disease in grape and scorch-like diseases in other plants. PBDMs for glassy-winged sharpshooter and its egg parasitoids (Gonatocerus ashmeadi Girault and G. triguttatus Girault) were developed and linked to a PBDM for grape published by Wermelinger et al. (1991). Daily weather data from 108 locations across California for the period 1995–2006 were used to drive the PBDM system, and GRASS GIS was used to map the simulation results. The geographic distribution of glassy-winged sharpshooter, as observed, is predicted to be largely restricted to the warm areas of southern California, with the action of the two egg parasitoids reducing its abundance >90%. The average indispensable mortality contributed by G. triguttatus is <1%. A temperature-dependent developmental rate model for X. fastidiosa was developed that suggests its geographic range is also limited to the warm inland areas of southern California. Biological control of glassy-winged sharpshooter further decreases the pathogens relative range. Climate warming scenarios of +2°C and +3°C suggest that the distribution and severity of glassy-winged sharpshooter and X. fastidiosa will increase in the agriculturally rich central valley of California. The utility of holistic analyses for formulating control policy and tactics for invasive species is discussed.
Agroecology and Sustainable Food Systems | 2015
Luigi Ponti; A. P. Gutierrez; Miguel A. Altieri
The Mediterranean Basin is a climate change and biological invasion hotspot where recent warming is facilitating the establishment and spread of invasive species, one of which is the highly destructive South American tomato leafminer (Tuta absoluta). This pest recently invaded the Mediterranean Basin where it threatens Solanaceous crops. Holistic approaches are required to project the potential geographic distribution and relative abundance of invasive species and hence are pivotal to developing sound policy for their management. This need is increasing dramatically in the face of a surge in biological invasions and climate change. However, while holistic analyses of invasive species are often advocated, they are rarely implemented. We propose that physiologically based demographic models (PBDMs) in the context of a geographic information system (GIS) can provide the appropriate level of synthesis required to capture the complex interactions basic to manage invasive species such as T. absoluta. We review the PBDMs for two invasive flies, and use them as a basis for assessing the biological data available for the development of a PBDM for T. absoluta, and in the process identify large data gaps that using the PBDM as a guide can be easily filled. Other components for an ecologically based management program for this pest (habitat modification, natural and classical biocontrol, pheromones, and others) are also reviewed. The development of a PBDM for T. absoluta would provide the basis for an interdisciplinary agroecological synthesis of the problem and the role different control tactics would play in region-specific control of the pest.