Luigino Vitali
Saipem
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Luigino Vitali.
ASME 2003 22nd International Conference on Offshore Mechanics and Arctic Engineering | 2003
Enrico Torselletti; Luigino Vitali; Roberto Bruschi; Leif Collberg
The offshore pipeline industry is planning new gas trunklines at water depth ever reached before (up to 3500 m). In such conditions, external hydrostatic pressure becomes the dominating loading condition for the pipeline design. In particular, pipe geometric imperfections as the cross section ovality, combined load effects as axial and bending loads superimposed to the external pressure, material properties as compressive yield strength in the circumferential direction and across the wall thickness etc., significantly interfere in the definition of the demanding, in such projects, minimum wall thickness requirements. This paper discusses the findings of a series of ultra deep-water studies carried out in the framework of Snamprogetti corporate RD • The line pipe material i.e. the effect of the shape of the actual stress-strain curve and the Y/T ratio on the sectional performance, under combined loads; • The load combination i.e. the effect of the axial force and bending moment on the limit capacity against collapse and ovalisation buckling failure modes, under the considerable external pressure. International design guidelines are analysed in this respect, and experimental findings are compared with the ones from the application of proposed limit state equations and from dedicated FE simulations.Copyright
Volume 4: Terry Jones Pipeline Technology; Ocean Space Utilization; CFD and VIV Symposium | 2006
Enrico Torselletti; Luigino Vitali; Erik Levold; Kim Mo̸rk
The development of deep water gas fields using trunklines to carry the gas to the markets is sometime limited by the feasibility/economics of the construction phase. In particular there is a market for using S-lay vessels in water depth larger than 1000m. The S-lay feasibility depends on the applicable tension at the tensioner which is a function of water depth, stinger length and stinger curvature (for given stinger length by its curvature). This means that, without major vessel up-grading and to avoid too long stingers that are prone to damages caused by environmental loads, the application of larger stinger curvatures than presently allowed by current regulations/state of the art is needed. The work presented in this paper is a result of the project “Development of a Design Guideline for Submarine Pipeline Installation” sponsored by STATOIL and HYDRO. The technical activities are performed in co-operation by DNV, STATOIL and SNAMPROGETTI. The scope of the project is to produce a LRFD (Load Resistant Factor Design) design guideline to be used in the definition and application of design criteria for the laying phase e.g. to S and J-lay methods/equipment. The guideline covers D/t from 15 to 45 and applied strains over the overbend in excess of 0.5%. This paper addresses the failure modes relevant for combined high curvatures/strains, axial, external pressure and local forces due to roller over the stinger of an S-lay vessel and to sea bottom contacts, particularly: • Residual pipe ovality after laying, • Maximum strain and bending moment capacity. Analytical equations are proposed in accordance with DNV OS F101 philosophy and design format.Copyright
ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering | 2014
Lorenzo Bartolini; Alberto Battistini; Lorenzo Marchionni; Antonio Parrella; Maurizio Spinazzè; Luigino Vitali
Future offshore pipelines development moves towards challenging operating condition and deep/ultra-deep water applications. Understanding the failure mechanisms and quantifying the strength and deformation capacity of pipelines, special components (buckle arrestors, wye, etc.) and in-line structures (in-line sled, in-line valve, in-line tee, etc.) is a need, under installation and operation loads, taking in account different geometrical characteristics and mechanical behaviors. The objective of this paper is to present and discuss recent FEM approaches integrating global and local analyses to evaluate the pipeline response and local effects, respectively. Thanks to this method the results coming from the global FEM analysis (main loads and driving phenomena) are used as input data for local FE Model with the aim to detect stress/strain intensification and other issues due to the local characteristics.In this paper:• The challenges of future deep water offshore pipelines are briefly presented;• The typical loading scenarios for pipelines during installation and operation are discussed;• The PipeONE 2014 tool, developed to facilitate the input/output data sharing between global and local FEM analyses, is presented and fully described in its main characteristics and capabilities;• An example is presented with the aim to understand and to appreciate the PipeONE 2014 functionality in FE modeling.© 2014 ASME
ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering | 2011
Lorenzo Marchionni; Lombardi Alessandro; Luigino Vitali
The future offshore pipeline development projects envisage the installation of medium to large diameter pipelines (16″ to 32″ ND) transporting gas from the deep waters to the shallow water areas. The development of these deep water projects is limited by the feasibility/economics of the construction phase using the J-lay or the S-lay technology. In particular, the S-lay feasibility depends on the applicable tension at the tensioner which is a function of water depth, stinger geometry (length and curvature), and installation criteria. In this paper: – The challenges of future deep water offshore pipelines are briefly presented; – The installation criteria at the overbend, stinger tip and sagbend are discussed; – The ABAQUS FE Model, developed to simulate pipeline installation, is presented together with the pre- and post-processing program put in place; – The results of the developed ABAQUS FE Model are given considering two typical examples of deep water pipelines installed in the S-lay mode.© 2011 ASME
Volume 4: Terry Jones Pipeline Technology; Ocean Space Utilization; CFD and VIV Symposium | 2006
Enrico Torselletti; Luigino Vitali; Roberto Bruschi; Erik Levold; Leif Collberg
The development of deep water gas fields using trunklines to carry the gas to the markets is sometime limited by the feasibility/economics of the construction phase. In particular there is market for using S-lay vessel in water depth larger than 1000m. The S-lay feasibility depends on the applicable tension at the tensioner which is a function of water depth, stinger length and stinger curvature (for given stinger length by its curvature). This means that, without major vessel up-grading and to avoid too long stingers that are prone to damages caused by environmental loads, the application of larger stinger curvatures than allowed by current regulations/state of the art, is needed. The work presented in this paper is a result of the project “Development of a Design Guideline for Submarine Pipeline Installation” sponsored by STATOIL and HYDRO. The technical activities are performed in co-operation by DNV, STATOIL and SNAMPROGETTI. This paper presents the results of the analysed S-lay scenarios in relation to extended laying ability of medium to large diameter pipelines in order to define the statistical distribution of the relevant load effects, i.e. bending moment and longitudinal strain as per static/functional, dynamic/total, and environmental load effects. The results show that load effects (longitudinal applied strain and bending moment) are strongly influenced by the static setting (applied stinger curvature and axial force at the tensioner in combination with local roller reaction over the stinger). The load effect distributions are the basis for the development of design criteria/safety factors which fulfil a predefined target safety level.Copyright
ASME 2003 22nd International Conference on Offshore Mechanics and Arctic Engineering | 2003
Enrico Torselletti; Roberto Bruschi; Furio Marchesani; Luigino Vitali
Buckle propagation under external pressure is a potential hazard during offshore pipeline laying in deep waters. It is normal design practice to install thicker pipe sections which, in case of buckle initiation and consequent propagation, can stop it so avoiding the lost of long pipe sections as well as threats to the installation equipment and dedicated personnel. There is still a series of questions the designer needs to answer when a new trunkline for very deep water applications is conceived: • What are the implications of the actual production technology (U-ing, O-ing and Expansion or Compression e.g. UO, UOE and UOC) on the propagation and arrest capacity of the line pipe, • How formulations for buckle arrestors design can be linked to a safety objective as required in modern submarine pipeline applications. The answers influence any decision on thickness, length, material and spacing of buckle arrestors. This paper gives an overview of buckle propagation and arrest phenomena and proposes a new design equation, applicable for both short and long buckle arrestors, based on available literature information and independent numerical analyses. Partial safety factors are recommended, based on a calibration process performed using structural reliability methods. Calibration aimed at fulfilling the safety objectives defined in DNV Offshore Standards OS-F101 and OS-F201.Copyright
29th International Conference on Ocean, Offshore and Arctic Engineering: Volume 5, Parts A and B | 2010
Luigi Di Vito; Jan Ferino; Gianluca Mannucci; Antonio Lucci; Luigino Vitali; Furio Marchesani; Mariano Armengol; Paolo Novelli; Federico Tintori; Philippe Darcis; Alfonso Izquierdo; Hector Quintanilla
Tenaris and Centro Sviluppo Materiali (CSM) launched a Joint Industrial Project aimed at developing heavy wall line pipes. The suitability for very severe applications, involving high service pressures and temperatures, the latter causing large strain fluctuations, in presence of an aggressive sour environment, is analyzed both theoretically and experimentally, including small and full pipe models. The full project program aims at developing a new generation heavy wall product, supported by: a comprehensive laboratory analysis of the material response under severe mechanical loading in aggressive environment; and full scale testing program, including both pipe and girth weld. Both investigations are mainly addressed to basic understanding of impact on design criteria from interaction between severe loading and aggressive environment. Two papers have been already presented on this project, [2] and [3]. The present paper deals with the study, carried out in cooperation with Saipem Energy Services, aimed at setting up a tool for the prediction of ratcheting extent for the pipeline in pressure subjected to axial cyclic, even plastic, straining. In such conditions, ratcheting may develop in the circumferential direction, as a consequence of both material cyclic performance and bi-axial plastic flow. So, detailed characterization of material is required, as well as calibration of plastic performance parameters, particularly in relation to relevant modeling. The final objective of the study is to establish a threshold for the plastic strain development at peak load, beyond which circumferential ratcheting may develop. A numerical model was set up, on-purpose developed and implemented on commercial software, where reverse yielding is modeled by kinematic hardening referring to Von-Mises yield criterion. Use of relevant parameters describing/approximating the actual material response has been made, based on laboratory Multi Plastic Straining Cycling (MPSC) of pipe full thickness samples. Full scale testing of pressurized X65, 10 3/4″ OD × 46 mm WT linepipe has been performed including plastic axial and cyclic straining. A huge measurement campaign allowed to establish the relevant parameters that characterize the response from numerical modeling, facilitating the validation of the set up by comparing the actual ratcheting exhibited by the heavy wall pipe with predictions obtained by the model. Limits of current tools for numerical modeling are also shown, with some degree of dependence on applied straining sequence. Possible paths of numerical modeling improvement are then envisaged.Copyright
ASME 2005 24th International Conference on Offshore Mechanics and Arctic Engineering | 2005
Roberto Bruschi; Lorenzo Bartolini; Maurizio Spinazzè; Enrico Torselletti; Luigino Vitali
In the recent years, the offshore pipeline industry has been under pressure to provide solutions for demanding material and line pipe technology problems, installation technology to safely tackle the ultra-deep waters challenge, quantitative prediction of reliable operating lifetime for pipelines under high pressure/high temperature conditions and remedial measures to tackle considerable geo-morphic and human activity related hazards. Future pipelines are being planned in very difficult environments, i.e. crossing ultra-deep water and difficult geo-seismic-morphic conditions. In these circumstances, it is of crucial importance (1) to adopt advanced design procedure and criteria, possibly based on limit state principles recently implemented in the design codes, and (2) to use advanced engineering tools for predicting the strength capacity and the pipeline behaviour during the installation and operational phase, in order to design the pipeline safely and to assess properly the technic-economical feasibility of the project. This paper discusses the relevant failure modes for offshore pipelines, the FE analysis results relevant to the sectional capacity of thick-walled pipes, and the FE analysis results relevant to the global and local response effect of a pipeline, laid on the sea bottom, and subject to a point-load force.Copyright
ASME 2005 24th International Conference on Offshore Mechanics and Arctic Engineering | 2005
Luigino Vitali; Lorenzo Bartolini; Dag O̸. Askheim; Ralf Peek; Erik Levold
In the last twenty years, experimental tests and FEM-based theoretical studies have been carried out to investigate the buckling mechanisms of thin-walled pipes subject to internal pressure, axial force and bending moment. Unfortunately, these studies do not completely cover the scope relevant for offshore pipelines i.e. outer diameter to thickness ratio lower than 50. In the HotPipe Phase 2 JI Project, full-scale bending tests were performed on pressurized pipes to verify the Finite Element Model predictions from HotPipe Phase 1 of the beneficial effect of internal pressure on the capacity of pipes to undergo large plastic bending deformations without developing local buckling. A total of 4 pipes were tested, the key test parameters being the outer-diameter-to-wall-thickness ratio (seameless pipes with D/t = 25.6, and welded UOE pipes with D/t = 34.2), and the presence of a girth weld in the test section. For comparison a Finite Element Model was developed with shell elements in ABAQUS. The test conditions were matched as closely as possible: this includes the test configuration, the stress-strain curves (i.e. using measured curves as input), and the loading history. The FE results very realistically reproduce the observed failure mechanisms by formation and localization of wrinkles on the compression side of the pipe. Good agreement is also achieved in the moment capacities (with predictions only 2.5 to 8% above measured values), but larger differences arose for the deformation capacity, suggesting that the DNV OS-F101 formulation for the characteristic bending strain (which is based on FE predictions from HotPipe Phase I) may be non-conservative in certain cases.Copyright
ASME 2005 24th International Conference on Offshore Mechanics and Arctic Engineering | 2005
Enrico Torselletti; Luigino Vitali; Roberto Bruschi
In the last ten years, several studies were completed with the aim to define a design format for the local buckling of pipes subjected to differential pressure, axial load and bending moment. Experimental tests were carried out and simplified analytical solutions were developed in order to predict the pipe bending moment capacity and the associated level of deformation. Standard finite element (FE) structural codes, such as ABAQUS, ADINA, ANSYS, etc., were and are used as a “numerical testing laboratory”, where the model is suitably calibrated to few experimental tests. The outcomes of these research efforts were implemented in the design equations enclosed in international design rules, as DNV OS-F101. The local buckling design formats, included in these rules, give the limit bending moment and associated longitudinal strain as a function of the relevant parameters. The effect of the girth weld is introduced with a reduction factor only for what regards the strain at limit bending moment. This paper addresses the effects of the presence of the girth weld on both limit bending moment and corresponding compressive longitudinal strain. A 3-dimensional (3D) FE model developed in ABAQUS has been developed to perform a parametric analysis. The FE model results are shown to compare reasonably well with full scale experiments performed for on-shore pipelines. The limit bending moment is reduced by the weld misalignment and this reduction is also dependent on both internal pressure load and linepipe material mechanical strength. The FE results are compared with the limit bending moment calculated with DNV OS-F101.Copyright