Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luis A. Cubano is active.

Publication


Featured researches published by Luis A. Cubano.


Journal of Biological Chemistry | 2012

Characterization of EHop-016, Novel Small Molecule Inhibitor of Rac GTPase

Brenda L. Montalvo-Ortiz; Linette Castillo-Pichardo; Eliud Hernandez; Tessa Humphries-Bickley; Alina De La Mota-Peynado; Luis A. Cubano; Cornelis Vlaar; Suranganie Dharmawardhane

Background: Rac is a central regulator of cancer cell migration/invasion and metastasis. Results: EHop-016 inhibits Rac activity with an IC50 of 1 μm. EHop-016 blocks Rac interaction with the Rac exchange factor Vav2, lamellipodia extension, and cell migration. Conclusion: EHop-016 is an effective Rac inhibitor. Significance: EHop-016 has potential as a metastasis therapeutic and for investigations of Rac-regulated cellular responses. The Rho GTPase Rac regulates actin cytoskeleton reorganization to form cell surface extensions (lamellipodia) required for cell migration/invasion during cancer metastasis. Rac hyperactivation and overexpression are associated with aggressive cancers; thus, interference of the interaction of Rac with its direct upstream activators, guanine nucleotide exchange factors (GEFs), is a viable strategy for inhibiting Rac activity. We synthesized EHop-016, a novel inhibitor of Rac activity, based on the structure of the established Rac/Rac GEF inhibitor NSC23766. Herein, we demonstrate that EHop-016 inhibits Rac activity in the MDA-MB-435 metastatic cancer cells that overexpress Rac and exhibits high endogenous Rac activity. The IC50 of 1.1 μm for Rac inhibition by EHop-016 is ∼100-fold lower than for NSC23766. EHop-016 is specific for Rac1 and Rac3 at concentrations of ≤5 μm. At higher concentrations, EHop-016 inhibits the close homolog Cdc42. In MDA-MB-435 cells that demonstrate high active levels of the Rac GEF Vav2, EHop-016 inhibits the association of Vav2 with a nucleotide-free Rac1(G15A), which has a high affinity for activated GEFs. EHop-016 also inhibits the Rac activity of MDA-MB-231 metastatic breast cancer cells and reduces Rac-directed lamellipodia formation in both cell lines. EHop-016 decreases Rac downstream effects of PAK1 (p21-activated kinase 1) activity and directed migration of metastatic cancer cells. Moreover, at effective concentrations (<5 μm), EHop-016 does not affect the viability of transformed mammary epithelial cells (MCF-10A) and reduces viability of MDA-MB-435 cells by only 20%. Therefore, EHop-016 holds promise as a targeted therapeutic agent for the treatment of metastatic cancers with high Rac activity.


PLOS ONE | 2013

Anti-Tumor Effects of Ganoderma lucidum (Reishi) in Inflammatory Breast Cancer in In Vivo and In Vitro Models

Ivette Suárez-Arroyo; Raysa Rosario-Acevedo; Alexandra Aguilar-Pérez; Pedro L. Clemente; Luis A. Cubano; Juan Serrano; Robert J. Schneider; Michelle M. Martínez-Montemayor

The medicinal mushroom Ganoderma lucidum (Reishi) was tested as a potential therapeutic for Inflammatory Breast Cancer (IBC) using in vivo and in vitro IBC models. IBC is a lethal and aggressive form of breast cancer that manifests itself without a typical tumor mass. Studies show that IBC tissue biopsies overexpress E-cadherin and the eukaryotic initiation factor 4GI (eIF4GI), two proteins that are partially responsible for the unique pathological properties of this disease. IBC is treated with a multimodal approach that includes non-targeted systemic chemotherapy, surgery, and radiation. Because of its non-toxic and selective anti-cancer activity, medicinal mushroom extracts have received attention for their use in cancer therapy. Our previous studies demonstrate these selective anti-cancer effects of Reishi, where IBC cell viability and invasion, as well as the expression of key IBC molecules, including eIF4G is compromised. Thus, herein we define the mechanistic effects of Reishi focusing on the phosphoinositide-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway, a regulator of cell survival and growth. The present study demonstrates that Reishi treated IBC SUM-149 cells have reduced expression of mTOR downstream effectors at early treatment times, as we observe reduced eIF4G levels coupled with increased levels of eIF4E bound to 4E-BP, with consequential protein synthesis reduction. Severe combined immunodeficient mice injected with IBC cells treated with Reishi for 13 weeks show reduced tumor growth and weight by ∼50%, and Reishi treated tumors showed reduced expression of E-cadherin, mTOR, eIF4G, and p70S6K, and activity of extracellular regulated kinase (ERK1/2). Our results provide evidence that Reishi suppresses protein synthesis and tumor growth by affecting survival and proliferative signaling pathways that act on translation, suggesting that Reishi is a potential natural therapeutic for breast and other cancers.


Nutrition and Cancer | 2011

Ganoderma lucidum (Reishi) Inhibits Cancer Cell Growth and Expression of Key Molecules in Inflammatory Breast Cancer

Michelle M. Martínez-Montemayor; Raysa Rosario Acevedo; Elisa Otero-Franqui; Luis A. Cubano; Suranganie Dharmawardhane

Inflammatory breast cancer (IBC) is the most lethal and least understood form of advanced breast cancer. Its lethality originates from its nature of invading the lymphatic system and absence of a palpable tumor mass. Different from other metastatic breast cancer cells, IBC cells invade by forming tumor spheroids that retain E-cadherin-based cell–cell adhesions. Herein we describe the potential of the medicinal mushroom Ganoderma lucidum (Reishi) as an attractive candidate for anti-IBC therapy. Reishi contains biological compounds that are cytotoxic against cancer cells. We report the effects of Reishi on viability, apoptosis, invasion, and its mechanism of action in IBC cells (SUM-149). Results show that Reishi selectively inhibits cancer cell viability although it does not affect the viability of noncancerous mammary epithelial cells. Apoptosis induction is consistent with decreased cell viability. Reishi inhibits cell invasion and disrupts the cell spheroids that are characteristic of the IBC invasive pathology. Reishi decreases the expression of genes involved in cancer cell survival and proliferation (BCL-2, TERT, PDGFB), and invasion and metastasis (MMP-9), whereas it increases the expression of IL8. Reishi reduces BCL-2, BCL-XL, E-cadherin, eIF4G, p120-catenin, and c-Myc protein expression and gelatinase activity. These findings suggest that Reishi is an effective anti-IBC therapeutic.


The Open Neuroscience Journal | 2009

Ischemia Increases TREK-2 Channel Expression in Astrocytes: Relevance to Glutamate Clearance

Lilia Kucheryavykh; Yuriy V. Kucheryavykh; Mikhail Inyushin; Yaroslav Shuba; Priscila Sanabria; Luis A. Cubano; Serguei N. Skatchkov; Misty J. Eaton

The extent of an ischemic insult is less in brain regions enriched in astrocytes suggesting that astrocytes maintain function and buffer glutamate during ischemia. Astrocytes express a wide variety of potassium channels to support their functions including TREK-2 channels which are regulated by polyunsaturated fatty acids, intracellular acidosis and swelling; conditions that pertain to ischemia. The present study investigated the possible involvement of TREK-2 channels in cultured cortical astrocytes during experimental ischemia (anoxia/hypoglycemia) by examining TREK-2 protein levels, channel activity and ability to clear glutamate. We found that TREK-2 protein levels were increased rapidly within 2 hrs of the onset of simulated ischemia. This increase corresponded to an increase in temperature-sensitive TREK-2-like channel conductance and the ability of astrocytes to buffer extracellular glutamate even during ischemia. Together, these data suggest that up-regulation of TREK-2 channels may help rescue astrocyte function and lower extracellular glutamate during ischemia.


BMC Complementary and Alternative Medicine | 2013

Dietary grape polyphenol resveratrol increases mammary tumor growth and metastasis in immunocompromised mice

Linette Castillo-Pichardo; Luis A. Cubano; Suranganie Dharmawardhane

BackgroundResveratrol, a polyphenol from grapes and red wine has many health beneficial effects, including protection against cardiovascular and neurodegenerative diseases and cancer. However, our group and others have provided evidence for a dual cancer promoting or inhibitory role for resveratrol in breast cancer, dependent on estrogenic or antiestrogenic activities. Moreover, much of the inhibitory effects of resveratrol have been reported from studies with high non-physiological concentrations.MethodsWe investigated the effects of a range of concentrations (0.5, 5, 50 mg/kg body weight) of resveratrol on mammary tumor development post-initiation, using immunocompromised mice.ResultsOur findings suggest promotion of mammary tumor growth and metastasis by resveratrol at all concentrations tested in tumors derived from the low metastatic estrogen receptor (ER)α(-), ERβ(+) MDA-MB-231 and the highly metastatic ER(-) MDA-MB-435 cancer cell lines. Additionally, the activity of the migration/invasion regulator Rac, which we have previously shown to be regulated by resveratrol in vitro, was measured in tumors from resveratrol treated mice. Our results show a significant induction of tumoral Rac activity and a trend in increased expression of the Rac downstream effector PAK1 and other tumor promoting molecules following resveratrol treatment.ConclusionTaken together, our findings implicate low concentrations of resveratrol in potential promotion of breast cancer. Therefore, this study illuminates the importance of further delineating resveratrol’s concentration dependent effects, particularly in breast cancer, before it can be tested in the clinic or used as a dietary supplement for breast cancer patients.


Clinical Proteomics | 2012

Unique and differential protein signatures within the mononuclear cells of HIV-1 and HCV mono-infected and co-infected patients

Nawal M. Boukli; Vivekananda Shetty; Luis A. Cubano; Martha Ricaurte; Jordana Coelho-dos-Reis; Zacharie Nickens; Punit Shah; Andrew H. Talal; Ramila Philip; Pooja Jain

BackgroundPathogenesis of liver damage in patients with HIV and HCV co-infection is complex and multifactorial. Although global awareness regarding HIV-1/HCV co-infection is increasing little is known about the pathophysiology that mediates the rapid progression to hepatic disease in the co-infected individuals.ResultsIn this study, we investigated the proteome profiles of peripheral blood mononuclear cells from HIV-1 mono-, HCV mono-, and HIV-1/HCV co-infected patients. The results of high-resolution 2D gel electrophoresis and PD quest software quantitative analysis revealed that several proteins were differentially expressed in HIV-1, HCV, and HIV-1/HCV co-infection. Liquid chromatography-mass spectrometry and Mascot database matching (LC-MS/MS analysis) successfully identified 29 unique and differentially expressed proteins. These included cytoskeletal proteins (tropomyosin, gelsolin, DYPLSL3, DYPLSL4 and profilin-1), chaperones and co-chaperones (HSP90-beta and stress-induced phosphoprotein), metabolic and pre-apoptotic proteins (guanosine triphosphate [GTP]-binding nuclear protein Ran, the detoxifying enzyme glutathione S-transferase (GST) and Rho GDP-dissociation inhibitor (Rho-GDI), proteins involved in cell prosurvival mechanism, and those involved in matrix synthesis (collagen binding protein 2 [CBP2]). The six most significant and relevant proteins were further validated in a group of mono- and co-infected patients (n = 20) at the transcriptional levels.ConclusionsThe specific pro- and anti- apoptotic protein signatures revealed in this study could facilitate the understanding of apoptotic and protective immune-mediated mechanisms underlying HIV-1 and HCV co-infection and their implications on liver disease progression in co-infected patients.


Nutrition and Cancer | 2016

Soy Isoflavone Genistein-Mediated Downregulation of miR-155 Contributes to the Anticancer Effects of Genistein

Columba de la Parra; Linette Castillo-Pichardo; Ailed Cruz-Collazo; Luis A. Cubano; Roxana S. Redis; George A. Calin; Suranganie Dharmawardhane

ABSTRACT We previously reported that dietary genistein inhibits mammary tumor growth and metastasis of the highly metastatic MDA-MB-435 cancer cells in immunocompromised mice. The purpose herein was to characterize the role of the novel oncogenic microRNA (miRNA) miR-155 in the anticancer effects of genistein in metastatic breast cancer. The effect of genistein was determined on breast cancer cell viability, apoptosis, and expression of miR-155 and its targets. At low physiologically relevant concentrations, genistein inhibits cell viability and induces apoptosis in metastatic MDA-MB-435 and Hs578t breast cancer cells, without affecting the viability of nonmetastatic MCF-7 breast cancer cells. In parallel with reduced cell viability, miR-155 is downregulated, whereas proapoptotic and anticell proliferative miR-155 targets FOXO3, PTEN, casein kinase, and p27 are upregulated in MDA-MB-435 and Hs578t cells in response to genistein treatment. However, miR-155 levels remain unchanged in response to genistein in the MCF-7 cells. Ectopic expression of miR-155 in MDA-MB-435 and Hs578t cells decreases the effects of genistein on cell viability and abrogates the effects of genistein on apoptosis and expression of proapoptotic genes. Therefore, genistein-mediated downregulation of miR-155 contributes to the anticancer effects of genistein in metastatic breast cancer.


Translational Oncology | 2014

The Rac Inhibitor EHop-016 Inhibits Mammary Tumor Growth and Metastasis in a Nude Mouse Model

Linette Castillo-Pichardo; Tessa Humphries-Bickley; Columba de la Parra; Ingrid Forestier-Roman; Magaly Martínez-Ferrer; Eliud Hernandez; Cornelis Vlaar; Yancy Ferrer-Acosta; Anthony V Washington; Luis A. Cubano; Jose Rodriguez-Orengo; Suranganie Dharmawardhane

Metastatic disease still lacks effective treatments, and remains the primary cause of cancer mortality. Therefore, there is a critical need to develop better strategies to inhibit metastatic cancer. The Rho family GTPase Rac is an ideal target for anti-metastatic cancer therapy, because Rac is a key molecular switch that is activated by a myriad of cell surface receptors to promote cancer cell migration/invasion and survival. Previously, we reported the design and development of EHop-016, a small molecule compound, which inhibits Rac activity of metastatic cancer cells with an IC50 of 1 μM. EHop-016 also inhibits the activity of the Rac downstream effector p21-activated kinase (PAK), lamellipodia extension, and cell migration in metastatic cancer cells. Herein, we tested the efficacy of EHop-016 in a nude mouse model of experimental metastasis, where EHop-016 administration at 25 mg/kg body weight (BW) significantly reduced mammary fat pad tumor growth, metastasis, and angiogenesis. As quantified by UPLC MS/MS, EHop-016 was detectable in the plasma of nude mice at 17 to 23 ng/ml levels at 12 h following intraperitoneal (i.p.) administration of 10 to 25 mg/kg BW EHop-016. The EHop-016 mediated inhibition of angiogenesis In Vivo was confirmed by immunohistochemistry of excised tumors and by In Vitro tube formation assays of endothelial cells. Moreover, EHop-016 affected cell viability by down-regulating Akt and Jun kinase activities and c-Myc and Cyclin D expression, as well as increasing caspase 3/7 activities in metastatic cancer cells. In conclusion, EHop-016 has potential as an anticancer compound to block cancer progression via multiple Rac-directed mechanisms.


Glia | 2008

Complex rectification of Müller cell Kir currents.

Yuriy V. Kucheryavykh; Yaroslav Shuba; Sergei M. Antonov; Mikhail Y. Inyushin; Luis A. Cubano; Wade L. Pearson; Harley T. Kurata; Andreas Reichenbach; Rüdiger W. Veh; Colin G. Nichols; Misty J. Eaton; Serguei N. Skatchkov

Although Kir4.1 channels are the major inwardly rectifying channels in glial cells and are widely accepted to support K+‐ and glutamate‐uptake in the nervous system, the properties of Kir4.1 channels during vital changes of K+ and polyamines remain poorly understood. Therefore, the present study examined the voltage‐dependence of K+ conductance with varying physiological and pathophysiological external [K+] and intrapipette spermine ([SP]) concentrations in Müller glial cells and in tsA201 cells expressing recombinant Kir4.1 channels. Two different types of [SP] block were characterized: “fast” and “slow.” Fast block was steeply voltage‐dependent, with only a low sensitivity to spermine and strong dependence on extracellular potassium concentration, [K+]o. Slow block had a strong voltage sensitivity that begins closer to resting membrane potential and was essentially [K+]o‐independent, but with a higher spermine‐ and [K+]i‐sensitivity. Using a modified Woodhull model and fitting i/V curves from whole cell recordings, we have calculated free [SP]in in Müller glial cells as 0.81 ± 0.24 mM. This is much higher than has been estimated previously in neurons. Biphasic block properties underlie a significantly varying extent of rectification with [K+] and [SP]. While confirming similar properties of glial Kir and recombinant Kir4.1, the results also suggest mechanisms underlying K+ buffering in glial cells: When [K+]o is rapidly increased, as would occur during neuronal excitation, “fast block” would be relieved, promoting potassium influx to glial cells. Increase in [K+]in would then lead to relief of “slow block,” further promoting K+‐influx.


PLOS ONE | 2015

Microglia Activate Migration of Glioma Cells through a Pyk2 Intracellular Pathway.

Kimberleve Rolón-Reyes; Yuriy V. Kucheryavykh; Luis A. Cubano; Mikhail Inyushin; Serguei N. Skatchkov; Misty J. Eaton; Jeffrey K. Harrison; Lilia Kucheryavykh

Glioblastoma is one of the most aggressive and fatal brain cancers due to the highly invasive nature of glioma cells. Microglia infiltrate most glioma tumors and, therefore, make up an important component of the glioma microenvironment. In the tumor environment, microglia release factors that lead to the degradation of the extracellular matrix and stimulate signaling pathways to promote glioma cell invasion. In the present study, we demonstrated that microglia can promote glioma migration through a mechanism independent of extracellular matrix degradation. Using western blot analysis, we found upregulation of proline rich tyrosine kinase 2 (Pyk2) protein phosphorylated at Tyr579/580 in glioma cells treated with microglia conditioned medium. This upregulation occurred in rodent C6 and GL261 as well as in human glioma cell lines with varying levels of invasiveness (U-87MG, A172, and HS683). siRNA knock-down of Pyk2 protein and pharmacological blockade by the Pyk2/focal-adhesion kinase (FAK) inhibitor PF-562,271 reversed the stimulatory effect of microglia on glioma migration in all cell lines. A lower concentration of PF-562,271 that selectively inhibits FAK, but not Pyk2, did not have any effect on glioma cell migration. Moreover, with the use of the CD11b-HSVTK microglia ablation mouse model we demonstrated that elimination of microglia in the implanted tumors (GL261 glioma cells were used for brain implantation) by the local in-tumor administration of Ganciclovir, significantly reduced the phosphorylation of Pyk2 at Tyr579/580 in implanted tumor cells. Taken together, these data indicate that microglial cells activate glioma cell migration/dispersal through the pro-migratory Pyk2 signaling pathway in glioma cells.

Collaboration


Dive into the Luis A. Cubano's collaboration.

Top Co-Authors

Avatar

Linette Castillo-Pichardo

Central University of the Caribbean

View shared research outputs
Top Co-Authors

Avatar

Cornelis Vlaar

University of Puerto Rico

View shared research outputs
Top Co-Authors

Avatar

Suranganie Dharmawardhane

Central University of the Caribbean

View shared research outputs
Top Co-Authors

Avatar

Madhavan Nair

Florida International University

View shared research outputs
Top Co-Authors

Avatar

Yismeilin Feliz-Mosquea

Interamerican University of Puerto Rico

View shared research outputs
Top Co-Authors

Avatar

Nicolas G. Azios

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eliud Hernandez

University of Puerto Rico

View shared research outputs
Top Co-Authors

Avatar

George A. Calin

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Guangdi Wang

Xavier University of Louisiana

View shared research outputs
Researchain Logo
Decentralizing Knowledge