Luis Alberto Luévano-Martínez
University of São Paulo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Luis Alberto Luévano-Martínez.
Free Radical Biology and Medicine | 2012
Ariel R. Cardoso; Bruno Chausse; Fernanda M. Cunha; Luis Alberto Luévano-Martínez; Thire B.M. Marazzi; Phillipe S. Pessoa; Bruno B. Queliconi; Alicia J. Kowaltowski
Knowledge of location and intracellular subcompartmentalization is essential for the understanding of redox processes, because oxidants, owing to their reactive nature, must be generated close to the molecules modified in both signaling and damaging processes. Here we discuss known redox characteristics of various mitochondrial microenvironments. Points covered are the locations of mitochondrial oxidant generation, characteristics of antioxidant systems in various mitochondrial compartments, and diffusion characteristics of oxidants in mitochondria. We also review techniques used to measure redox state in mitochondrial subcompartments, antioxidants targeted to mitochondrial subcompartments, and methodological concerns that must be addressed when using these tools.
Mitochondrion | 2011
Salvador Uribe-Carvajal; Luis Alberto Luévano-Martínez; Sergio Guerrero-Castillo; Alfredo Cabrera-Orefice; Norma Corona-De-La-Pena; Manuel Gutiérrez-Aguilar
Mitochondria from diverse species can undergo a massive permeability increase known as the permeability transition, a process first thought to be an artifact. It is currently accepted that in the inner mitochondrial membrane there is a Mitochondrial Unselective Channel (MUC), also known as the permeability transition pore. Regardless of the species, MUC opening leads to uncoupling of oxidative phosphorylation. In each species, MUC regulation appears to be different, probably as a result of the adaptation of each organism to its specific environment. To date, the components and the putative physiological role of MUCs are still a matter of debate. Current hypothesis suggests that proteins normally participating in diverse metabolic functions constitute MUCs. Among these proteins, the Adenine Nucleotide Translocase and the phosphate carrier have been proposed as putative MUC components in mammalian and yeast mitochondria. In this review, the characteristics of MUCs from different species and strains are discussed. The data from the literature reinforce the current notion that these channels are preserved through evolution albeit with different control factors. We emphasize the knowledge available of Mitochondrial Unselective Channels from different yeast species.
Journal of Bioenergetics and Biomembranes | 2011
Sergio Guerrero-Castillo; Daniela Araiza-Olivera; Alfredo Cabrera-Orefice; Juan Espinasa-Jaramillo; Manuel Gutiérrez-Aguilar; Luis Alberto Luévano-Martínez; Armando Zepeda-Bastida; Salvador Uribe-Carvajal
Under non-phosphorylating conditions a high proton transmembrane gradient inhibits the rate of oxygen consumption mediated by the mitochondrial respiratory chain (state IV). Slow electron transit leads to production of reactive oxygen species (ROS) capable of participating in deleterious side reactions. In order to avoid overproducing ROS, mitochondria maintain a high rate of O2 consumption by activating different exquisitely controlled uncoupling pathways. Different yeast species possess one or more uncoupling systems that work through one of two possible mechanisms: i) Proton sinks and ii) Non-pumping redox enzymes. Proton sinks are exemplified by mitochondrial unspecific channels (MUC) and by uncoupling proteins (UCP). Saccharomyces. cerevisiae and Debaryomyces hansenii express highly regulated MUCs. Also, a UCP was described in Yarrowia lipolytica which promotes uncoupled O2 consumption. Non-pumping alternative oxido-reductases may substitute for a pump, as in S. cerevisiae or may coexist with a complete set of pumps as in the branched respiratory chains from Y. lipolytica or D. hansenii. In addition, pumps may suffer intrinsic uncoupling (slipping). Promising models for study are unicellular parasites which can turn off their aerobic metabolism completely. The variety of energy dissipating systems in eukaryote species is probably designed to control ROS production in the different environments where each species lives.
Journal of Bioenergetics and Biomembranes | 2015
Alfredo Cabrera-Orefice; Rodrigo Ibarra-García-Padilla; Rocío Maldonado-Guzmán; Sergio Guerrero-Castillo; Luis Alberto Luévano-Martínez; Victoriano Pérez-Vázquez; Manuel Gutiérrez-Aguilar; Salvador Uribe-Carvajal
It is proposed that the Saccharomyces cerevisiae the Mitochondrial Unselective Channel (ScMUC) is tightly regulated constituting a physiological uncoupling system that prevents overproduction of reactive oxygen species (ROS). Mg2+, Ca2+ or phosphate (Pi) close ScMUC, while ATP or a high rate of oxygen consumption open it. We assessed ScMUC activity by measuring in isolated mitochondria the respiratory control, transmembrane potential (ΔΨ), swelling and production of ROS. At increasing [Pi], less [Ca2+] and/or [Mg2+] were needed to close ScMUC or increase ATP synthesis. The Ca2+-mediated closure of ScMUC was prevented by high [ATP] while the Mg2+ or Pi effect was not. When Ca2+ and Mg2+ were alternatively added or chelated, ScMUC opened and closed reversibly. Different effects of Ca2+ vs Mg2+ effects were probably due to mitochondrial Mg2+ uptake. Our results suggest that ScMUC activity is dynamically controlled by both the ATP/Pi ratio and divalent cation fluctuations. It is proposed that the reversible opening/closing of ScMUC leads to physiological uncoupling and a consequent decrease in ROS production.
Biochimica et Biophysica Acta | 2015
Luis Alberto Luévano-Martínez; Maria Fernanda Forni; Valquiria Tiago dos Santos; Nadja C. de Souza-Pinto; Alicia J. Kowaltowski
Mitochondria play a key role in adaptation during stressing situations. Cardiolipin, the main anionic phospholipid in mitochondrial membranes, is expected to be a determinant in this adaptive mechanism since it modulates the activity of most membrane proteins. Here, we used Saccharomyces cerevisiae subjected to conditions that affect mitochondrial metabolism as a model to determine the possible role of cardiolipin in stress adaptation. Interestingly, we found that thermal stress promotes a 30% increase in the cardiolipin content and modifies the physical state of mitochondrial membranes. These changes have effects on mtDNA stability, adapting cells to thermal stress. Conversely, this effect is cardiolipin-dependent since a cardiolipin synthase-null mutant strain is unable to adapt to thermal stress as observed by a 60% increase of cells lacking mtDNA (ρ0). Interestingly, we found that the loss of cardiolipin specifically affects the segregation of mtDNA to daughter cells, leading to a respiratory deficient phenotype after replication. We also provide evidence that mtDNA physically interacts with cardiolipin both in S. cerevisiae and in mammalian mitochondria. Overall, our results demonstrate that the mitochondrial lipid cardiolipin is a key determinant in the maintenance of mtDNA stability and segregation.
Aging Cell | 2017
Ignacio Amigo; Sergio L. Menezes-Filho; Luis Alberto Luévano-Martínez; Bruno Chausse; Alicia J. Kowaltowski
Caloric restriction (CR) protects against many cerebral pathological conditions that are associated with excitotoxic damage and calcium overload, although the mechanisms are still poorly understood. Here we show that CR strongly protects against excitotoxic insults in vitro and in vivo in a manner associated with significant changes in mitochondrial function. CR increases electron transport chain activity, enhances antioxidant defenses, and favors mitochondrial calcium retention capacity in the brain. These changes are accompanied by a decrease in cyclophilin D activity and acetylation and an increase in Sirt3 expression. This suggests that Sirt3‐mediated deacetylation and inhibition of cyclophilin D in CR promote the inhibition of mitochondrial permeability transition, resulting in enhanced mitochondrial calcium retention. Altogether, our results indicate that enhanced mitochondrial calcium retention capacity underlies the beneficial effects of CR against excitotoxic conditions. This protection may explain the many beneficial effects of CR in the aging brain.
Biochimica et Biophysica Acta | 2010
Luis Alberto Luévano-Martínez; Eva Moyano; Mario García de Lacoba; Eduardo Rial; Salvador Uribe-Carvajal
Uncoupling proteins (UCPs) are mitochondrial carriers distributed throughout the eukaryotic kingdoms. While genes coding for UCPs have been identified in plants and animals, evidences for the presence of UCPs in fungi and protozoa are only functional. Here, it is reported that in the yeast Yarrowia lipolytica there is a fatty acid-promoted and GDP-sensitive uncoupling activity indicating the presence of a UCP. The uncoupling activity is higher in the stationary phase than in the mid-log growth phase. The in silico search on the Y. lipolytica genome led to the selection of two genes with the highest homology to the UCP family, XM_503525 and XM_500457. By phylogenetic analysis, XP_503525 was predicted to be an oxaloacetate carrier while XP_500457 would be a dicarboxylate carrier. Each of these two genes was cloned and heterologously expressed in Saccharomyces cerevisiae and the resulting phenotype was analyzed. The transport activity of the two gene products confirmed the phylogenetic predictions. In addition, only mitochondria isolated from yeasts expressing XP_503525 showed bioenergetic properties characteristic of a UCP: the proton conductance was increased by linoleic acid and inhibited by GDP. It is concluded that the XM_503525 gene from Y. lipolytica encodes for an oxaloacetate carrier although, remarkably, it also displays an uncoupling activity stimulated by fatty acids and inhibited by nucleotides.
Archives of Biochemistry and Biophysics | 2015
Luis Alberto Luévano-Martínez; Alicia J. Kowaltowski
Phosphatidylglycerol and phospholipids derived from it are widely distributed throughout the three domains of life. Cardiolipin is the best characterized of these phospholipids, and plays a key role in the response to environmental variations. Phosphatidylglycerol-derived phospholipids confer cell membranes with a wide range of responses, including changes in surface charge, fluidity, flexibility, morphology, biosynthesis and remodeling, that adapt the cell to these situations. Furthermore, the synthesis and remodeling of these phospholipids is finely regulated, highlighting the importance of these lipids in cell homeostasis and responses during stressful situations. In this article, we review the most important roles of these anionic phospholipids across domains, focusing on the biophysical basis by which these phospholipids are used in stress responses.
Mechanisms of Ageing and Development | 2017
Luis Alberto Luévano-Martínez; Maria Fernanda Forni; Julia Peloggia; Ii-Sei Watanabe; Alicia J. Kowaltowski
Calorie restriction (CR) has been amply demonstrated to modify mitochondrial function. However, little is known regarding the effects of this dietary regimen on mitochondrial membranes. We isolated phospholipids from rat liver mitochondria from animals on CR or ad libitum diets and found that mitochondria from ad libitum animals present an increased content of lipoperoxides and the content of cardiolipin. Cardiolipin is the main anionic phospholipid present in mitochondrial membranes, and plays a key role in mitochondrial function, signaling and stress response. Expression levels of the enzymes involved in cardiolipin biosynthesis and remodeling were quantified and found to be upregulated in CR animals. Interestingly, when mitochondrial membranes were fractionated, the outer membrane presented a higher content of cardiolipin, indicating a redistribution of this phospholipid mediated by a phospholipid scramblase in CR. This change is associated with Drp1-mediated mitochondrial fragmentation and autophagy. Overall, we find that CR promotes extensive mitochondrial membrane remodeling, decreasing oxidatively damaged lipids, and increasing cardiolipin levels and redistributing cardiolipin. These changes in membrane properties are consistent with and may be causative of changes in mitochondrial morphology, function and turnover previously found to occur in CR.
Biochemical Journal | 2016
Ignacio Amigo; Fernanda M. Cunha; Maria Fernanda Forni; Wilson Garcia-Neto; Pâmela A. Kakimoto; Luis Alberto Luévano-Martínez; Felipe Macedo; Sergio L. Menezes-Filho; Julia Peloggia; Alicia J. Kowaltowski
Aging is often accompanied by a decline in mitochondrial mass and function in different tissues. Additionally, cell resistance to stress is frequently found to be prevented by higher mitochondrial respiratory capacity. These correlations strongly suggest mitochondria are key players in aging and senescence, acting by regulating energy homeostasis, redox balance and signalling pathways central in these processes. However, mitochondria display a wide array of functions and signalling properties, and the roles of these different characteristics are still widely unexplored. Furthermore, differences in mitochondrial properties and responses between tissues and cell types, and how these affect whole body metabolism are also still poorly understood. This review uncovers aspects of mitochondrial biology that have an impact upon aging in model organisms and selected mammalian cells and tissues.