Luís C. B. Crispino
Federal University of Pará
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Luís C. B. Crispino.
Reviews of Modern Physics | 2008
Luís C. B. Crispino; Atsushi Higuchi; George E. A. Matsas
It has been 30 years since the discovery of the Unruh effect. It has played a crucial role in our understanding that the particle content of a field theory is observer dependent. This effect is important in its own right and as a way to understand the phenomenon of particle emission from black holes and cosmological horizons. The Unruh effect is reviewed here with particular emphasis on its applications. A number of recent developments are also commented on and some controversies are discussed. Effort is also made to clarify what seem to be common misconceptions.
Physical Review D | 2011
Paolo Pani; Vitor Cardoso; Luís C. B. Crispino; Caio F. B. Macedo
We present, in closed analytic form, a general stationary, slowly rotating black hole, which is a solution to a large class of alternative theories of gravity in four dimensions. In these theories, the Einstein-Hilbert action is supplemented by all possible quadratic, algebraic curvature invariants coupled to a scalar field. The solution is found as a deformation of the Schwarzschild metric in general relativity. We explicitly derive the changes to the orbital frequency at the innermost stable circular orbit and at the light ring in closed form. These results could be useful when comparing general relativity against alternative theories by (say) measurements of x-ray emission in accretion disks, or by stellar motion around supermassive black holes. When gravitational-wave astronomy comes into force, strong constraints on the coupling parameters can in principle be made.
Physical Review D | 2009
Luís C. B. Crispino; Sam R. Dolan; Ednilton S. Oliveira
We present a study of scattering of massless planar scalar waves by a charged nonrotating black hole. Partial wave methods are applied to compute scattering and absorption cross sections, for a range of incident wavelengths. We compare our numerical results with semiclassical approximations from a geodesic analysis, and find excellent agreement. The glory in the backward direction is studied, and its properties are shown to be related to the properties of the photon orbit. The effects of the black hole charge upon scattering and absorption are examined in detail. As the charge of the black hole is increased, we find that the absorption cross section decreases, and the angular width of the interference fringes of the scattering cross section at large angles increases. In particular, the glory spot in the backward direction becomes wider. We interpret these effects under the light of our geodesic analysis.
Physical Review D | 2009
Sam R. Dolan; Ednilton S. Oliveira; Luís C. B. Crispino
This is a study of a monochromatic planar perturbation impinging upon a canonical acoustic hole. We show that acoustic hole scattering shares key features with black hole scattering. The interference of wave fronts passing in opposite senses around the hole creates regular oscillations in the scattered intensity. We examine this effect by applying a partial wave method to compute the differential scattering cross section for a range of incident wavelengths. We demonstrate the existence of a scattering peak in the backward direction, known as the glory. We show that the glory created by the canonical acoustic hole is approximately 170 times less intense than the glory created by the Schwarzschild black hole, for equivalent horizon-to-wavelength ratios. We hope that direct experimental observations of such effects may be possible in the near future.
Classical and Quantum Gravity | 2015
Hector O. Silva; Caio F. B. Macedo; Emanuele Berti; Luís C. B. Crispino
Some models (such as the Skyrme model, a low-energy effective field theory for QCD) suggest that the high-density matter prevailing in neutron star interiors may be significantly anisotropic. Anisotropy is known to affect the bulk properties of nonrotating neutron stars in General Relativity. In this paper we study the effects of anisotropy on slowly rotating stars in General Relativity. We also consider one of the most popular extensions of Einsteins theory, namely scalar-tensor theories allowing for spontaneous scalarization (a phase transition similar to spontaneous magnetization in ferromagnetic materials). Anisotropy affects the moment of inertia of neutron stars (a quantity that could potentially be measured in binary pulsar systems) in both theories. We find that the effects of scalarization increase (decrease) when the tangential pressure is bigger (smaller) than the radial pressure, and we present a simple criterion to determine the onset of scalarization by linearizing the scalar-field equation. Our calculations suggest that binary pulsar observations may constrain the degree of anisotropy or even, more optimistically, provide evidence for anisotropy in neutron star cores.
Physical Review D | 2013
Caio F. B. Macedo; Vitor Cardoso; Paolo Pani; Luís C. B. Crispino
Compact bosonic field configurations, or boson stars, are promising dark matter candidates which have been invoked as an alternative description for the supermassive compact objects in active galactic nuclei. Boson stars can be comparable in size and mass to supermassive objects, and they might be hard to distinguish by electromagnetic observations. However, boson stars do not possess an event horizon, and their global spacetime structure is different from that of a black hole. This leaves a characteristic imprint in the gravitational-wave emission, which can be used as a discriminant between black holes and other horizonless compact objects. Here we perform a detailed study of boson stars and their gravitational-wave signatures in a fully relativistic setting, a study which was lacking in the existing literature in many respects. We construct several fully relativistic boson star configurations, and we analyze their geodesic structure and free oscillation spectra, or quasinormal modes. We explore the gravitational and scalar response of boson star spacetimes to an inspiraling stellar-mass object and compare it to its black hole counterpart. We find that a generic signature of compact boson stars is the resonant-mode excitation by a small compact object on stable quasicircular geodesic motion.
Physical Review D | 2013
Luís C. B. Crispino; Atsushi Higuchi; Ednilton S. Oliveira; Jorge V. Rocha
We compute the greybody factors for non-minimally coupled scalar fields in four-dimensional Schwarzschild-de Sitter spacetime. In particular, we demonstrate that the zero-angular-momentum greybody factor generically tends to zero in the zero-frequency limit like frequency squared if there is non-vanishing coupling to the scalar curvature. This is in contrast with the minimally coupled case, where the greybody factor is known to tend to a finite constant. We also study the Hawking radiation for non-minimally coupled massless scalar fields in Schwarzschild-de Sitter spacetime, formulate a sensible notion of a generalized absorption cross section and investigate its properties.
Physical Review D | 2014
Leandro A. Oliveira; Vitor Cardoso; Luís C. B. Crispino
Four-dimensional, asymptotically flat spacetimes with an ergoregion but no horizon have been shown to be linearly unstable against a superradiant-triggered mechanism. This result has wide implications in the search for astrophysically viable alternatives to black holes, but also in the understanding of black holes and Hawking evaporation. Here we investigate this instability in detail for a particular setup that can be realized in the laboratory: the hydrodynamic vortex, an effective geometry for sound waves, with ergoregion and without an event horizon.
Physical Review D | 2014
Caio F. B. Macedo; Luís C. B. Crispino
Accretion of fields by black holes is a subject of great interest in physics. It is known that accretion plays a fundamental role in active galactic nuclei and in the evolution of black holes. Accretion of fundamental fields is often related to the study of absorption cross section. Basically all black holes for which absorption of fields has been studied so far present singularities. However, even within general relativity, it is possible to construct regular black holes: objects with event horizons but without singularities. Many physically motivated regular black hole solutions have been proposed in the past years, demanding the understanding of their absorption properties. We study the absorption of planar massless scalar waves by Bardeen regular black holes. We compare the absorption cross section of Bardeen and Reissner–Nordstrom black holes, showing that the former always have a bigger absorption cross section for fixed values of the field frequency and of the normalized black hole charge. We also show that it is possible for a Bardeen black hole to have the same high-frequency absorption cross section of a Reissner–Nordstrom black hole. Our results suggest that, in mid-to-high-frequency regimes, regular black holes can have compatible properties with black holes with singularities, as far as absorption is concerned.
Physical Review D | 2011
Maxim Eingorn; Orival R. de Medeiros; Luís C. B. Crispino; Alexander Zhuk
In Kaluza-Klein models with an arbitrary number of toroidal internal spaces, we investigate soliton solutions which describe the gravitational field of a massive compact object. We single out the physically interesting solution corresponding to a point-like mass. For the general solution we obtain equations of state in the external and internal spaces. These equations demonstrate that the point-like mass soliton has dust-like equations of state in all spaces. We also obtain the PPN parameters, which give the possibility to obtain the formulas for perihelion shift, deflection of light and time delay of radar echoes. Additionally, the gravitational experiments lead to a strong restriction on the parameter of the model: