Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luis Ceze is active.

Publication


Featured researches published by Luis Ceze.


programming language design and implementation | 2011

EnerJ: approximate data types for safe and general low-power computation

Adrian Sampson; Werner Dietl; Emily Fortuna; Danushen Gnanapragasam; Luis Ceze; Dan Grossman

Energy is increasingly a first-order concern in computer systems. Exploiting energy-accuracy trade-offs is an attractive choice in applications that can tolerate inaccuracies. Recent work has explored exposing this trade-off in programming models. A key challenge, though, is how to isolate parts of the program that must be precise from those that can be approximated so that a program functions correctly even as quality of service degrades. We propose using type qualifiers to declare data that may be subject to approximate computation. Using these types, the system automatically maps approximate variables to low-power storage, uses low-power operations, and even applies more energy-efficient algorithms provided by the programmer. In addition, the system can statically guarantee isolation of the precise program component from the approximate component. This allows a programmer to control explicitly how information flows from approximate data to precise data. Importantly, employing static analysis eliminates the need for dynamic checks, further improving energy savings. As a proof of concept, we develop EnerJ, an extension to Java that adds approximate data types. We also propose a hardware architecture that offers explicit approximate storage and computation. We port several applications to EnerJ and show that our extensions are expressive and effective; a small number of annotations lead to significant potential energy savings (10%-50%) at very little accuracy cost.


international symposium on microarchitecture | 2012

Neural Acceleration for General-Purpose Approximate Programs

Hadi Esmaeilzadeh; Adrian Sampson; Luis Ceze; Doug Burger

This paper describes a learning-based approach to the acceleration of approximate programs. We describe the \emph{Parrot transformation}, a program transformation that selects and trains a neural network to mimic a region of imperative code. After the learning phase, the compiler replaces the original code with an invocation of a low-power accelerator called a \emph{neural processing unit} (NPU). The NPU is tightly coupled to the processor pipeline to accelerate small code regions. Since neural networks produce inherently approximate results, we define a programming model that allows programmers to identify approximable code regions -- code that can produce imprecise but acceptable results. Offloading approximable code regions to NPUs is faster and more energy efficient than executing the original code. For a set of diverse applications, NPU acceleration provides whole-application speedup of 2.3x and energy savings of 3.0x on average with quality loss of at most 9.6%.


international symposium on computer architecture | 2006

Bulk Disambiguation of Speculative Threads in Multiprocessors

Luis Ceze; James Tuck; Josep Torrellas; Calin Cascaval

Transactional Memory (TM), Thread-Level Speculation (TLS), and Checkpointed multiprocessors are three popular architectural techniques based on the execution of multiple, cooperating speculative threads. In these environments, correctly maintaining data dependences across threads requires mechanisms for disambiguating addresses across threads, invalidating stale cache state, and making committed state visible. These mechanisms are both conceptually involved and hard to implement. In this paper, we present Bulk, a novel approach to simplify these mechanisms. The idea is to hash-encode a threads access information in a concise signature, and then support in hardware signature operations that efficiently process sets of addresses. Such operations implement the mechanisms described. Bulk operations are inexact but correct, and provide substantial conceptual and implementation simplicity. We evaluate Bulk in the context of TLS using SPECint2000 codes and TM using multithreaded Java workloads. Despite its simplicity, Bulk has competitive performance with more complex schemes. We also find that signature configuration is a key design parameter.


architectural support for programming languages and operating systems | 2009

DMP: deterministic shared memory multiprocessing

Joseph Devietti; Brandon Lucia; Luis Ceze; Mark Oskin

Current shared memory multicore and multiprocessor systems are nondeterministic. Each time these systems execute a multithreaded application, even if supplied with the same input, they can produce a different output. This frustrates debugging and limits the ability to properly test multithreaded code, becoming a major stumbling block to the much-needed widespread adoption of parallel programming. In this paper we make the case for fully deterministic shared memory multiprocessing (DMP). The behavior of an arbitrary multithreaded program on a DMP system is only a function of its inputs. The core idea is to make inter-thread communication fully deterministic. Previous approaches to coping with nondeterminism in multithreaded programs have focused on replay, a technique useful only for debugging. In contrast, while DMP systems are directly useful for debugging by offering repeatability by default, we argue that parallel programs should execute deterministically in the field as well. This has the potential to make testing more assuring and increase the reliability of deployed multithreaded software. We propose a range of approaches to enforcing determinism and discuss their implementation trade-offs. We show that determinism can be provided with little performance cost using our architecture proposals on future hardware, and that software-only approaches can be utilized on existing systems.


architectural support for programming languages and operating systems | 2012

Architecture support for disciplined approximate programming

Hadi Esmaeilzadeh; Adrian Sampson; Luis Ceze; Doug Burger

Disciplined approximate programming lets programmers declare which parts of a program can be computed approximately and consequently at a lower energy cost. The compiler proves statically that all approximate computation is properly isolated from precise computation. The hardware is then free to selectively apply approximate storage and approximate computation with no need to perform dynamic correctness checks. In this paper, we propose an efficient mapping of disciplined approximate programming onto hardware. We describe an ISA extension that provides approximate operations and storage, which give the hardware freedom to save energy at the cost of accuracy. We then propose Truffle, a microarchitecture design that efficiently supports the ISA extensions. The basis of our design is dual-voltage operation, with a high voltage for precise operations and a low voltage for approximate operations. The key aspect of the microarchitecture is its dependence on the instruction stream to determine when to use the low voltage. We evaluate the power savings potential of in-order and out-of-order Truffle configurations and explore the resulting quality of service degradation. We evaluate several applications and demonstrate energy savings up to 43%.


architectural support for programming languages and operating systems | 2010

CoreDet: a compiler and runtime system for deterministic multithreaded execution

Tom Bergan; Owen Anderson; Joseph Devietti; Luis Ceze; Dan Grossman

The behavior of a multithreaded program does not depend only on its inputs. Scheduling, memory reordering, timing, and low-level hardware effects all introduce nondeterminism in the execution of multithreaded programs. This severely complicates many tasks, including debugging, testing, and automatic replication. In this work, we avoid these complications by eliminating their root cause: we develop a compiler and runtime system that runs arbitrary multithreaded C/C++ POSIX Threads programs deterministically. A trivial non-performant approach to providing determinism is simply deterministically serializing execution. Instead, we present a compiler and runtime infrastructure that ensures determinism but resorts to serialization rarely, for handling interthread communication and synchronization. We develop two basic approaches, both of which are largely dynamic with performance improved by some static compiler optimizations. First, an ownership-based approach detects interthread communication via an evolving table that tracks ownership of memory regions by threads. Second, a buffering approach uses versioned memory and employs a deterministic commit protocol to make changes visible to other threads. While buffering has larger single-threaded overhead than ownership, it tends to scale better (serializing less often). A hybrid system sometimes performs and scales better than either approach individually. Our implementation is based on the LLVM compiler infrastructure. It needs neither programmer annotations nor special hardware. Our empirical evaluation uses the PARSEC and SPLASH2 benchmarks and shows that our approach scales comparably to nondeterministic execution.


acm sigplan symposium on principles and practice of parallel programming | 2006

POSH: a TLS compiler that exploits program structure

Wei Liu; James Tuck; Luis Ceze; Wonsun Ahn; Karin Strauss; Jose Renau; Josep Torrellas

As multi-core architectures with Thread-Level Speculation (TLS) are becoming better understood, it is important to focus on TLS compilation. TLS compilers are interesting in that, while they do not need to fully prove the independence of concurrent tasks, they make choices of where and when to generate speculative tasks that are crucial to overall TLS performance.This paper presents POSH, a new, fully automated TLS compiler built on top of gcc. POSH is based on two design decisions. First, to partition the code into tasks, it leverages the code structures created by the programmer, namely subroutines and loops. Second, it uses a simple profiling pass to discard ineffective tasks. With the code generated by POSH, a simulated TLS chip multiprocessor with 4 superscalar cores delivers an average speedup of 1.30 for the SPECint 2000 applications. Moreover, an estimated 26% of this speedup is a result of the implicit data prefetching provided by squashed tasks.


international symposium on computer architecture | 2007

BulkSC: bulk enforcement of sequential consistency

Luis Ceze; James Tuck; Pablo Montesinos; Josep Torrellas

While Sequential Consistency (SC) is the most intuitive memory consistency model and the one most programmers likely assume, current multiprocessors do not support it. Instead, they support more relaxed models that deliver high performance. SC implementations are considered either too slow or -- when they can match the performance of relaxed models -- too difficult to implement. In this paper, we propose Bulk Enforcement of SC (BulkSC), anovel way of providing SC that is simple to implement and offers performance comparable to Release Consistency (RC). The idea is to dynamically group sets of consecutive instructions into chunks that appear to execute atomically and in isolation. The hardware enforces SC at the coarse grain of chunks which, to the program, appears as providing SC at the individual memory access level. BulkSC keeps the implementation simple by largely decoupling memory consistency enforcement from processor structures. Moreover, it delivers high performance by enabling full memory access reordering and overlapping within chunks and across chunks. We describe a complete system architecture that supports BulkSC and show that it delivers performance comparable to RC.


international symposium on microarchitecture | 2013

Approximate storage in solid-state memories

Adrian Sampson; Jacob Nelson; Karin Strauss; Luis Ceze

Memories today expose an all-or-nothing correctness model that incurs significant costs in performance, energy, area, and design complexity. But not all applications need high-precision storage for all of their data structures all of the time. This paper proposes mechanisms that enable applications to store data approximately and shows that doing so can improve the performance, lifetime, or density of solid-state memories. We propose two mechanisms. The first allows errors in multi-level cells by reducing the number of programming pulses used to write them. The second mechanism mitigates wear-out failures and extends memory endurance by mapping approximate data onto blocks that have exhausted their hardware error correction resources. Simulations show that reduced-precision writes in multi-level phase-change memory cells can be 1.7x faster on average and using failed blocks can improve array lifetime by 23% on average with quality loss under 10%.


acm sigplan symposium on principles and practice of parallel programming | 2007

Implicit parallelism with ordered transactions

Christoph von Praun; Luis Ceze; Calin Cascaval

Implicit Parallelism with Ordered Transactions (IPOT) is an extension of sequential or explicitly parallel programming models to support speculative parallelization. The key idea is to specify opportunities for parallelization in a sequential program using annotations similar to transactions. Unlike explicit parallelism, IPOT annotations do not require the absence of data dependence, since the parallelization relies on runtime support for speculative execution. IPOT as a parallel programming model is determinate, i.e., program semantics are independent of the thread scheduling. For optimization, non-determinism can be introduced selectively. We describe the programming model of IPOT and an online tool that recommends boundaries of ordered transactions by observing a sequential execution. On three example HPC workloads we demonstrate that our method is effective in identifying opportunities for fine-grain parallelization. Using the automated task recommendation tool, we were able to perform the parallelization of each program within a few hours.

Collaboration


Dive into the Luis Ceze's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Oskin

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Dan Grossman

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Adrian Sampson

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Armin Alaghi

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Brandon Lucia

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Thierry Moreau

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Joseph Devietti

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Vincent T. Lee

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Jacob Nelson

University of Washington

View shared research outputs
Researchain Logo
Decentralizing Knowledge