Luis F. Gonzalez
Queensland University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Luis F. Gonzalez.
Sensors | 2016
Luis F. Gonzalez; Glen A. Montes; Eduard Puig; Sandra Johnson; Kerrie Mengersen; Kevin J. Gaston
Surveying threatened and invasive species to obtain accurate population estimates is an important but challenging task that requires a considerable investment in time and resources. Estimates using existing ground-based monitoring techniques, such as camera traps and surveys performed on foot, are known to be resource intensive, potentially inaccurate and imprecise, and difficult to validate. Recent developments in unmanned aerial vehicles (UAV), artificial intelligence and miniaturized thermal imaging systems represent a new opportunity for wildlife experts to inexpensively survey relatively large areas. The system presented in this paper includes thermal image acquisition as well as a video processing pipeline to perform object detection, classification and tracking of wildlife in forest or open areas. The system is tested on thermal video data from ground based and test flight footage, and is found to be able to detect all the target wildlife located in the surveyed area. The system is flexible in that the user can readily define the types of objects to classify and the object characteristics that should be considered during classification.
IEEE Transactions on Evolutionary Computation | 2011
DongSeop Lee; Luis F. Gonzalez; Jacques Periaux; Karkenahalli Srinivas
A number of game strategies have been developed in past decades and used in the fields of economics, engineering, computer science, and biology due to their efficiency in solving design optimization problems. In addition, research in multiobjective and multidisciplinary design optimization has focused on developing a robust and efficient optimization method so it can produce a set of high quality solutions with less computational time. In this paper, two optimization techniques are considered; the first optimization method uses multifidelity hierarchical Pareto-optimality. The second optimization method uses the combination of game strategies Nash-equilibrium and Pareto-optimality. This paper shows how game strategies can be coupled to multiobjective evolutionary algorithms and robust design techniques to produce a set of high quality solutions. Numerical results obtained from both optimization methods are compared in terms of computational expense and model quality. The benefits of using Hybrid and non-Hybrid-Game strategies are demonstrated.
ieee international conference on high performance computing data and analytics | 2013
Jonathan Kok; Luis F. Gonzalez; Neil A. Kelson
In this paper, a hardware-based path planning architecture for unmanned aerial vehicle (UAV) adaptation is proposed. The architecture aims to provide UAVs with higher autonomy using an application-specific evolutionary algorithm (EA) implemented entirely on a field-programmable gate array (FPGA) chip. The physical attributes of an FPGA chip, being compact in size and low in power consumption, makes it an ideal platform for UAV applications. The design, which is implemented entirely in hardware, consists of EA modules, population storage resources, and 3-D terrain information necessary to the path planning process, subject to constraints accounted for separately via UAV, environment, and mission profiles. The architecture has been successfully synthesized for a target Xilinx Virtex-4 FPGA platform with 32% logic slice utilization. Results obtained from case studies for a small UAV helicopter with environment derived from light-detection and ranging data verify the effectiveness of the proposed FPGA-based pathplanner, and demonstrate convergence at rates above the typical 10 Hz update frequency of an autopilot system.
international conference on robotics and automation | 2013
Wesam H. Al-Sabban; Luis F. Gonzalez; Ryan N. Smith
Exploiting wind-energy is one possible way to extend the flight duration of an Unmanned Aerial Vehicle. Wind-energy can also be used to minimise energy consumption for a planned path. In this paper, we consider uncertain, time-varying wind fields and plan a path through them that exploits the energy the field provides. A Gaussian distribution is used to determine uncertainty in the time-varying wind fields. We use a Markov Decision Process to plan a path based upon the uncertainty of the Gaussian distribution. Simulation results are presented to compare the direct line of flight between a start and target point with our planned path for energy consumption and time of travel. The result of our method is a robust path using the most visited cell while sampling the Gaussian distribution of the wind field in each cell.
Journal of Aircraft | 2011
D.S. Lee; Jacques Periaux; Eugenio Oñate; Luis F. Gonzalez; Ning Qin
The use of adaptive wing/aerofoil designs is being considered, as they are promising techniques in aeronautic/ aerospace since they can reduce aircraft emissions and improve aerodynamic performance of manned or unmanned aircraft. This paper investigates the robust design and optimization for one type of adaptive techniques: active flow control bump at transonic flow conditions on a natural laminar flow aerofoil. The concept of using shock control bump is to control supersonic flow on the suction/pressure side of natural laminar flow aerofoil that leads to delaying shock occurrence (weakening its strength) or boundary layer separation. Such an active flow control technique reduces total drag at transonic speeds due to reduction of wave drag. The location of boundary-layer transition can influence the position and structure of the supersonic shock on the suction/pressure side of aerofoil. The boundarylayer transition position is considered as an uncertainty design parameter in aerodynamic design due to the many factors, such as surface contamination or surface erosion. This paper studies the shock-control-bump shape design optimization using robust evolutionary algorithms with uncertainty in boundary-layer transition locations. The optimization method is based on a canonical evolution strategy and incorporates the concepts of hierarchical topology, parallel computing, and asynchronous evaluation. The use of adaptive wing/aerofoil designs is being considered, as they are promising techniques in aeronautic/ aerospace since they can reduce aircraft emissions and improve aerodynamic performance of manned or unmanned aircraft. This paper investigates the robust design and optimization for one type of adaptive techniques: active flow control bump at transonic flow conditions on a natural laminar flow aerofoil. The concept of using shock control bump is to control supersonic flow on the suction/pressure side of natural laminar flow aerofoil that leads to delaying shock occurrence (weakening its strength) or boundary-layer separation. Such an active flow control technique reduces total drag at transonic speeds due to reduction of wave drag. The location of boundary-layer transition can influence the position and structure of the supersonic shock on the suction/pressure side of aerofoil. The boundarylayer transition position is considered as an uncertainty design parameter in aerodynamic design due to the many factors, such as surface contamination or surface erosion. This paper studies the shock-control-bump shape design optimization using robust evolutionary algorithms with uncertainty in boundary-layer transition locations. The optimization method is based on a canonical evolution strategy and incorporates the concepts of hierarchical topology, parallel computing, and asynchronous evaluation. Two test cases are conducted: the first test assumes the boundary-layer transition position is at 45% of chord from the leading edge, and the second test considers robust design optimization for the shock control bump at the variability of boundary-layer transition positions. The numerical result shows that the optimization method coupled to uncertainty design techniques produces Pareto optimal shock-control-bump shapes, which have low sensitivity and high aerodynamic performance while having significant total drag reduction.
Journal of Dynamic Systems Measurement and Control-transactions of The Asme | 2010
Dong-Seop Lee; Jacques Periaux; Luis F. Gonzalez
This paper presents the application of advanced optimization techniques to unmanned aerial system mission path planning system (MPPS) using multi-objective evolutionary algorithms (MOEAs). Two types of multi-objective optimizers are compared; the MOEA nondominated sorting genetic algorithm II and a hybrid-game strategy are implemented to produce a set of optimal collision-free trajectories in a three-dimensional environment. The resulting trajectories on a three-dimensional terrain are collision-free and are represented by using Bezier spline curves from start position to target and then target to start position or different positions with altitude constraints. The efficiency of the two optimization methods is compared in terms of computational cost and design quality. Numerical results show the benefits of adding a hybrid-game strategy to a MOEA and for a MPPS.
Journal of Computational and Applied Mathematics | 2009
Jacques Periaux; D.S. Lee; Luis F. Gonzalez; Karkenahalli Srinivas
This paper compares the performances of two different optimisation techniques for solving inverse problems; the first one deals with the Hierarchical Asynchronous Parallel Evolutionary Algorithms software (HAPEA) and the second is implemented with a game strategy named Nash-EA. The HAPEA software is based on a hierarchical topology and asynchronous parallel computation. The Nash-EA methodology is introduced as a distributed virtual game and consists of splitting the wing design variables - aerofoil sections - supervised by players optimising their own strategy. The HAPEA and Nash-EA software methodologies are applied to a single objective aerodynamic ONERA M6 wing reconstruction. Numerical results from the two approaches are compared in terms of the quality of model and computational expense and demonstrate the superiority of the distributed Nash-EA methodology in a parallel environment for a similar design quality.
Faculty of Built Environment and Engineering | 2009
Dong-Seop Lee; Luis F. Gonzalez; Jacques Periaux; K. Srinivas
One of the new challenges in aeronautics is combining and accounting for multiple disciplines while considering uncertainties or variability in the design parameters or operating conditions. This paper describes a methodology for robust multidisciplinary design optimisation when there is uncertainty in the operating conditions. The methodology, which is based on canonical evolution algorithms, is enhanced by its coupling with an uncertainty analysis technique. The paper illustrates the use of this methodology on two practical test cases related to Unmanned Aerial Systems (UAS). These are the ideal candidates due to the multi-physics involved and the variability of missions to be performed. Results obtained from the optimisation show that the method is effective to find useful Pareto non-dominated solutions and demonstrate the use of robust design techniques.
Archive | 2006
Luis F. Gonzalez; Eric J. Whitney; K. Srinivas; Jacques Periaux
This paper details some current extensions and applications of hierarchical asynchronous parallel evolutionary algorithms (HAPEA) for multidisciplinary and multi-objective wing design and optimisation problems. In this work the search for the solution takes place in separate hierarchical layers comprising different CFD solvers or resolutions. The performance and advantages of the algorithm are compared to that of a classical EA which would normally use only a single complex model and involve larger computational expense. The formulation and implementation of the algorithm are described and a test case for a multidisciplinary transonic wing design in structures and aerodynamics is presented. The trade-off between the objective functions produced a set of compromise designs represented in an optimal Pareto front. Results indicate that the algorithm is fast and robust for multi-objective and multidisciplinary optimisation problems and as designed produces classical as well as alternative wing configurations.
Aeronautical Journal | 2006
Luis F. Gonzalez; D.S. Lee; K. Srinivas; K. C. Wong
Unmanned Aerial Vehicle (UAV) design tends to focus on sensors, payload and navigation systems, as these are the most expensive components. One area that is often overlooked in UAV design is airframe and aerodynamic shape optimisation. As for manned aircraft, optimisation is important in order to extend the operational envelope and efficiency of these vehicles. A traditional approach to optimisation is to use gradient-based techniques. These techniques are effective when applied to specific problems and within a specified range. These methods are efficient for finding optimal global solutions if the objective functions and constraints are differentiable. If a broader application of the optimiser is desired, or when the complexity of the problem arises because it is multi-modal, involves approximation, is non-differentiable, or involves multiple objectives and physics, as it is often the case in aerodynamic optimisation, more robust and alternative numerical tools are required. Emerging techniques such as Evolutionary Algorithms (EAs) have been shown to be robust as they require no derivatives or gradients of the objective function, have the capability of finding globally optimum solutions amongst many local optima, are easily executed in parallel, and can be adapted to arbitrary solver codes without major modifications. In this paper, the formulation and application of a evolutionary technique for aerofoil shape optimisation is described. Initially, the paper presents an introduction to the features of the method and a short discussion on multi-objective optimisation. The method is first illustrated on its application to mathematical test cases. Then it is applied to representative test cases related to aerofoil design. Results indicate the ability of the method for finding optimal solutions and capturing Pareto optimal fronts