Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luis F.O. Silva is active.

Publication


Featured researches published by Luis F.O. Silva.


Science of The Total Environment | 2010

Identification of nanominerals and nanoparticles in burning coal waste piles from Portugal.

Joana Ribeiro; Deolinda Flores; Colin R. Ward; Luis F.O. Silva

A range of carbon nanoparticles, agglomerates and mineral phases have been identified in burning coal waste pile materials from the Douro Coalfield of Portugal, as a basis for identifying their potential environmental and human health impacts. The fragile nature and fine particle size of these materials required novel characterization methods, including energy-dispersive X-ray spectrometry (EDS), field-emission scanning electron microscope (FE-SEM), and high-resolution transmission electron microscopy (HR-TEM) techniques. The chemical composition and possible correlations with morphology of the nanominerals and associated ultra-fine particles have been evaluated in the context of human health exposure, as well as in relation to management of such components in coal-fire environments.


Science of The Total Environment | 2012

Chemical composition and minerals in pyrite ash of an abandoned sulphuric acid production plant.

Marcos L.S. Oliveira; Colin R. Ward; M. Izquierdo; Carlos Hoffmann Sampaio; Irineu A. S. de Brum; Rubens M. Kautzmann; Sydney Sabedot; Xavier Querol; Luis F.O. Silva

The extraction of sulphur produces a hematite-rich waste, known as roasted pyrite ash, which contains significant amounts of environmentally sensitive elements in variable concentrations and modes of occurrence. Whilst the mineralogy of roasted pyrite ash associated with iron or copper mining has been studied, as this is the main source of sulphur worldwide, the mineralogy, and more importantly, the characterization of submicron, ultrafine and nanoparticles, in coal-derived roasted pyrite ash remain to be resolved. In this work we provide essential data on the chemical composition and nanomineralogical assemblage of roasted pyrite ash. XRD, HR-TEM and FE-SEM were used to identify a large variety of minerals of anthropogenic origin. These phases result from highly complex chemical reactions occurring during the processing of coal pyrite of southern Brazil for sulphur extraction and further manufacture of sulphuric acid. Iron-rich submicron, ultrafine and nanoparticles within the ash may contain high proportions of toxic elements such as As, Se, U, among others. A number of elements, such as As, Cr, Cu, Co, La, Mn, Ni, Pb, Sb, Se, Sr, Ti, Zn, and Zr, were found to be present in individual nanoparticles and submicron, ultrafine and nanominerals (e.g. oxides, sulphates, clays) in concentrations of up to 5%. The study of nanominerals in roasted pyrite ash from coal rejects is important to develop an understanding on the nature of this by-product, and to assess the interaction between emitted nanominerals, ultra-fine particles, and atmospheric gases, rain or body fluids, and thus to evaluate the environmental and health impacts of pyrite ash materials.


Science of The Total Environment | 2009

An introductory TEM study of Fe-nanominerals within coal fly ash.

Luis F.O. Silva; Teresa Moreno; Xavier Querol

The investigation presented here was conducted during a wider experiment on the technical feasibility and environmental impacts of tire combustion in a Brazilian coal-fired power station. Nanometric-sized crystalline phases in fly ash were characterised using energy-dispersive X-ray spectrometer (EDS) and high-resolution transmission electron microscopy (HR-TEM) images. The nanoparticles, which register abundance peaks at 10 nm and 100 nm, include iron-rich oxide (e.g. hematite), Fe-sulphate (e.g., yavapaiite: KFe(SO4)2), and Fe-aluminumsilicate glass. Individual metalliferous nanoparticles have a heterogeneous microstructure in which elements such as iron, aluminum and silicon are not uniformly distributed. HR-TEM offers a powerful analytical technique in the study of fly ash nanoparticles, providing a better understanding of the detailed chemistry of this potentially strongly bioreactive component of atmospheric particulate matter.


Journal of Hazardous Materials | 2011

Time of flight secondary ion mass spectrometry and high-resolution transmission electron microscopy/energy dispersive spectroscopy: a preliminary study of the distribution of Cu2+ and Cu2+/Pb2+ on a Bt horizon surfaces.

Beatriz Cerqueira; F.A. Vega; C. Serra; Luis F.O. Silva; M.L. Andrade

Relatively new techniques can help in determining the occurrence of mineral species and the distribution of contaminants on soil surfaces such as natural minerals and organic matter. The Bt horizon from an Endoleptic Luvisol was chosen because of its well-known sorption capability. The samples were contaminated with Cu(2+) and/or Pb(2+) and both sorption and desorption experiments were performed. The preferential distribution of the contaminant species ((63)Cu and (208)Pb) to the main soil components and their associations were studied together with the effectiveness of the surface sorption and desorption processes. The results obtained were compared with non-contaminated samples as well as with previous results obtained by different analytical techniques and advanced statistical analysis. Pb(2+) competes favorably for the sorption sites in this soil, mainly in oxides and the clay fraction. Cu(2+) and Pb(2+) were mainly associated with hematite, gibbsite, vermiculite and chlorite. This study will serve as a basis for further scientific research on the soil retention of heavy metals. New techniques such as spectroscopic imaging and transmission electron microscopy make it possible to check which soil components retain heavy metals, thereby contributing to propose effective measures for the remediation of contaminated soil.


Journal of Hazardous Materials | 2011

Brazilian coal mining residues and sulphide oxidation by Fenton's reaction: an accelerated weathering procedure to evaluate possible environmental impact.

Luis F.O. Silva; Xavier Querol; K.M. da Boit; S. Fdez-Ortiz de Vallejuelo; Juan Manuel Madariaga

Fentons reaction is proposed as an accelerated weathering test for sulphides associated with Brazilian Coal Mining Residues (CMR), that are exposed to oxygen and water during the mining of coal. TEM and SEM/EDX were used to evaluate the nature, occurrence and distribution of minerals in remaining coals and other lithological units, before and after applying the test. Oxidation of CMRs was examined by analyzing soluble sulphur (sulphate) and dissolved metals by ICP-MS or ICP OES. As dissolved sulphate increases, dissolved Zn, Cd, Cu and Co concentrations increase, leading to undetectable amounts in the remaining solid phases; dissolved Ni and Mn also increase with the mobilized sulphur, but the remainder in the solids is the most important fraction; Fe and Pb are not mobilized due to precipitation as jarosite or hematite in the case of Fe or as sulphate in the case of Pb. Agreement between the observed results and the predictions by geochemical modelling is discussed.


Environmental Monitoring and Assessment | 2011

Nanominerals and nanoparticles in feed coal and bottom ash: implications for human health effects

Luis F.O. Silva; Kátia da Boit

Environmental and human health risk assessments of nanoparticle effects from coal and bottom ash require thorough characterisation of nanoparticles and their aggregates. In this manuscript, we expand the study of human exposure to nanosized particles from coal combustion sources (typically <100xa0nm in size), characterising the complex micromineralogy of these airborne combustion-derived nanomaterials. Our study focuses on bottom ash generated in the Santa Catarina power station (Brazil) which uses coal enriched in ashes, many potential elements (e.g. Cr and Ni) and pyrite. Transmission electron microscope data reveal nanoscale C deposits juxtaposed with and overgrown by slightly larger aluminosilicate (Al–Si) glassy spheres, oxides, silicates, carbonated, phosphates and sulphates. Iron oxides (mainly hematite and magnetite) are the main bottom ash products of the oxidation of pyrite, sometimes via intermediate pyrrhotite formation. The presence of iron oxide nanocrystals mixed with silicate glass particles emphasises the complexity of coal and bottom ash micromineralogy. Given the potentially bioreactive nature of such transition metal-bearing materials, there is likely to be an increased health risk associated with their inhalation.


Science of The Total Environment | 2013

Study of environmental pollution and mineralogical characterization of sediment rivers from Brazilian coal mining acid drainage

Luis F.O. Silva; Silvia Fdez-Ortiz de Vallejuelo; I. Martinez-Arkarazo; Kepa Castro; Marcos L.S. Oliveira; Carlos Hoffmann Sampaio; Irineu A. S. de Brum; Felipe B. de Leão; Silvio R. Taffarel; Juan Manuel Madariaga

Acid drainage from coal mines and metal mining is a major source of underground and surface water contamination in the world. The coal mining acid drainage (CMAD) from mine contains large amount of solids in suspension and a high content of sulphate and dissolved metals (Al, Mn, Zn, Cu, Pb, Fe, etc.) that finally are deposited in the rivers. Since this problem can persist for centuries after mine abandonment, it is necessary to apply multidisciplinary methods to determine the potential risk in a determinate area. These multidisciplinary methods must include molecular and elemental analysis and finally all information must be studied statistically. This methodology was used in the case of coal mining acid drainage from the Tubarao River (Santa Catarina, Brazil). During molecular analysis, Raman Spectroscopy, electron bean, and X-ray diffraction (XRD) have been proven very useful for the study of minerals present in sediment rivers near this CMAD. The obtained spectra allow the precise identification of the minerals as jarosite, quartz, clays, etc. The elemental analysis (Al, As, Fe, K, Na, Ba, Mg, Mn, Ti, V, Zn, Ag, Co, Li, Mo, Ni, Se, Sn, W, B, Cr, Cu, Pb and Sr) was realised by inductively coupled plasma mass spectrometry (ICP-MS). Statistical analysis (Principal Component Analysis) of these dates of concentration reveals the existence of different groups of samples with specific pollution profiles in different areas of the Tubarao River.


Environmental Geochemistry and Health | 2011

A preliminary study of coal mining drainage and environmental health in the Santa Catarina region, Brazil.

Luis F.O. Silva; Marcus Wollenschlager; Marcos L.S. Oliveira

The concentrations and loadings of major and trace elements in coal mine drainage (CMD) from 49 abandoned mines located in the coal fields of the Brazilian state of Santa Catarina were determined. The CMD sites typically displayed a wide spatial and temporal variability in physical and geochemical conditions. The results of our CMD analyses in Santa Catarina State were used to illustrate that the geochemical processes in the rock piles can be deduced from multiple data sets. The observed relationship between the pH and constituent concentrations were attributed to (1) dilution of acidic water by near-neutral or alkaline groundwater and (2) solubility control of Al, Fe, Mn, Ba and Sr by hydroxide, sulfate, and/or carbonate minerals. The preliminary results of the CMD analyses and environmental health in the Santa Catarina region, Brazil, are discussed.


Coal Combustion and Gasification Products | 2010

Mineralogy and Leaching Characteristics of Coal Ash from a Major Brazilian Power Plant

Luis F.O. Silva; Colin R. Ward; James C. Hower; Maria Izquierdo; F.B. Waanders; Marcos L.S. Oliveira; Zhongsheng Li; Rachel S. Hatch; Xavier Querol

The feed coals, fly ashes and bottom ashes collected from seven different units in a major Brazilian PF power plant have been subjected to comprehensive mineralogical, geochemical, and petrographic studies, to investigate the links between feed coal and ash characteristics. Ashes from two of the units were collected while the coal was being co-fired with oil as part of the boiler start-up procedure, allowing the impact of oil co-firing on ash characteristics also to be evaluated. High proportions of unburnt carbon and high proportions of retained sulphur were found in the fly ashes produced during oil co-firing, probably reflecting less efficient combustion and associated lower combustion temperatures. Higher concentrations of a number of relatively volatile trace elements were also noted in these fly ashes, compared to the fly ashes collected from units under normal operating conditions. The fly ashes produced during oil co-firing gave rise to acid pH conditions in water-based leaching tests, in contrast to the alkaline pH associated with fly ashes produced during normal operations. This probably reflects higher SO3 contents relative to total CaO + MgO for the co-fired ash samples. Many trace elements that are typically mobilised as cations were also more abundant in leachates from the co-fired fly ashes. This is due, most likely, to the more acid pH conditions involved. Despite similar or even higher total concentrations, however, elements that are typically released from coal ash as oxy-anions were less mobile from the co-fired fly ashes than from the normally-fired fly ash materials. f 2010 The University of Kentucky Center for Applied Energy Research and the American Coal Ash Association All rights reserved. A R T I C L E I N F O Article history: Received 28 July 2010; Received in revised form 17 August 2010; Accepted 23 August 2010


Science of The Total Environment | 2010

Complex nanominerals and ultrafine particles assemblages in phosphogypsum of the fertilizer industry and implications on human exposure

Luis F.O. Silva; James C. Hower; Maria Izquierdo; Xavier Querol

Phosphogypsum (CaSO(4).2H(2)O), a by-product of phosphate-rock processing, contains high amounts of impurities such P(2)O(5), F, radioactive elements, organic substances, secondary nanominerals, and ultrafine particles (UFP) enriched in metals and metalloids. In this study, we examine phosphogypsum (PG) collected from abandoned fertilizer industry facility in south Brazil (Santa Catarina state). The fragile nature of nanominerals and UFP assemblages from fertilizer industry systems required novel techniques and experimental approaches. The investigation of the geochemistry of complex nanominerals and UFP assemblages was a prerequisite to accurately assess the environmental and human health risks of contaminants and cost-effective chemical and biogeological remediation strategies. Particular emphasis was placed on the study and characterization of the complex mixed nanominerals and UFP containing potentially toxic elements. Nanometer-sized phases in PG were characterized using energy-dispersive X-ray spectrometer (EDS), field-emission scanning electron microscope (FE-SEM), and high-resolution transmission electron microscopy (HR-TEM) images. The chemical composition and possible correlations with morphology of nanominerals and UFP, as well as aspects of nanominerals and UFP, are discussed in the context of human health exposure, as well as in relation to management of the nanominerals and UFP in PG environments.

Collaboration


Dive into the Luis F.O. Silva's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elba Calesso Teixeira

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Xavier Querol

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Juan Manuel Madariaga

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar

Kátia da Boit

Simón Bolívar University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carlos Hoffmann Sampaio

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge