Luis Felipe Barros
Centro de Estudios Científicos
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Luis Felipe Barros.
The Journal of Neuroscience | 2003
Anitsi Loaiza; Omar H. Porras; Luis Felipe Barros
Glutamate stimulates glycolysis in astrocytes, a phenomenon that couples astrocytic metabolism with neuronal activity. However, it is not known whether glutamate also affects glucose transporter-1 (GLUT1), the transporter responsible for glucose entry into astrocytes. To address this question, two different real-time single-cell hexose uptake assays were applied to cultured hippocampal astrocytes using confocal epifluorescence microscopy. Glutamate caused a twofold to threefold increase in the zero-trans uptake rates of the fluorescent hexoses 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxyglucose (2-NBDG) and 6-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-6-deoxyglucose (6-NBDG). Galactose uptake, determined by the calcein volumetric assay, was stimulated to a similar extent, confirming the fluorescent hexose data, and also demonstrating that glutamate stimulation is a Vmax effect. Remarkably, glucose transport stimulation developed fully inside 10 sec, which is 100 times faster than acute stimulations of glucose transport in other cell types. Glutamate did not significantly affect the rate of 6-NBDG uptake by GLUT1-expressing epithelial Clone 9 cells, suggesting that an astrocyte-specific factor is required for transport stimulation. We conclude that glucose transport stimulation occurs early during astrocytic activation by glutamate, which provides a novel regulatory node to current models of brain energy metabolism. This mechanism should also be considered for the interpretation of functional imaging data based on hexoses.
Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2001
Luis Felipe Barros; Tamara Hermosilla; Joel Castro
Whether a lethally injured mammalian cell undergoes necrosis or apoptosis may be determined by the early activation of specific ion channels at the cell surface. Apoptosis requires K+ and Cl- efflux, which leads to cell shrinking, an active phenomenon termed apoptotic volume decrease (AVD). In contrast, necrosis has been shown to require Na+ influx through membrane carriers and more recently through stress-activated non-selective cation channels (NSCCs). These ubiquitous channels are kept dormant in viable cells but become activated upon exposure to free-radicals. The ensuing Na+ influx leads to cell swelling, an active response that may be termed necrotic volume increase (NVI). This review focuses on how AVD and NVI become conflicting forces at the beginning of cell injury, on the events that determine irreversibility and in particular, on the ion fluxes that decide whether a cell is to die by necrosis or by apoptosis.
PLOS ONE | 2013
Alejandro San Martín; Sebastián Ceballo; Iván Ruminot; Rodrigo Lerchundi; Wolf B. Frommer; Luis Felipe Barros
Lactate is shuttled between and inside cells, playing metabolic and signaling roles in healthy tissues. Lactate is also a harbinger of altered metabolism and participates in the pathogenesis of inflammation, hypoxia/ischemia, neurodegeneration and cancer. Many tumor cells show high rates of lactate production in the presence of oxygen, a phenomenon known as the Warburg effect, which has diagnostic and possibly therapeutic implications. In this article we introduce Laconic, a genetically-encoded Forster Resonance Energy Transfer (FRET)-based lactate sensor designed on the bacterial transcription factor LldR. Laconic quantified lactate from 1 µM to 10 mM and was not affected by glucose, pyruvate, acetate, betahydroxybutyrate, glutamate, citrate, α-ketoglutarate, succinate, malate or oxalacetate at concentrations found in mammalian cytosol. Expressed in astrocytes, HEK cells and T98G glioma cells, the sensor allowed dynamic estimation of lactate levels in single cells. Used in combination with a blocker of the monocarboxylate transporter MCT, the sensor was capable of discriminating whether a cell is a net lactate producer or a net lactate consumer. Application of the MCT-block protocol showed that the basal rate of lactate production is 3–5 fold higher in T98G glioma cells than in normal astrocytes. In contrast, the rate of lactate accumulation in response to mitochondrial inhibition with sodium azide was 10 times lower in glioma than in astrocytes, consistent with defective tumor metabolism. A ratio between the rate of lactate production and the rate of azide-induced lactate accumulation, which can be estimated reversibly and in single cells, was identified as a highly sensitive parameter of the Warburg effect, with values of 4.1 ± 0.5 for T98G glioma cells and 0.07 ± 0.007 for astrocytes. In summary, this article describes a genetically-encoded sensor for lactate and its use to measure lactate concentration, lactate flux, and the Warburg effect in single mammalian cells.
Glia | 2007
Luis Felipe Barros; Carla X. Bittner; Anitsi Loaiza; Omar H. Porras
While glucose is constantly being “pulled” into the brain by hexokinase, its flux across the blood brain barrier (BBB) is allowed by facilitative carriers of the GLUT family. Starting from the microscopic properties of GLUT carriers, and within the constraints imposed by the available experimental data, chiefly NMR spectroscopy, we have generated a numerical model that reveals several hidden features of glucose transport and metabolism in the brain. The half‐saturation constant of glucose uptake into the brain (Kt) is close to 8 mM. GLUT carriers at the BBB are symmetric, show accelerated‐exchange, and a Km of zero‐trans flux (Kzt) close to 5 mM, determining a ratio of 3.6 between maximum transport rate and net glucose flux (Tmax/CMRglc). In spite of the low transporter occupancy, the model shows that for a stimulated hexokinase to pull more glucose into the brain, the number or activity of GLUT carriers must also increase, particularly at the BBB. The endothelium is therefore predicted to be a key modulated element for the fast control of energy metabolism. In addition, the simulations help to explain why mild hypoglycemia may be asymptomatic and reveal that [glucose]brain (as measured by NMR) should be much more sensitive than glucose flux (as measured by PET) as an indicator of GLUT1 deficiency. In summary, available data from various sources has been integrated in a predictive model based on the microscopic properties of GLUT carriers.
The Journal of Neuroscience | 2011
Iván Ruminot; Robin Gutiérrez; Peña-Münzenmayer G; Añazco C; T. Sotelo-Hitschfeld; Rodrigo Lerchundi; Niemeyer Mi; Gary E. Shull; Luis Felipe Barros
Excitatory synaptic transmission stimulates brain tissue glycolysis. This phenomenon is the signal detected in FDG-PET imaging and, through enhanced lactate production, is also thought to contribute to the fMRI signal. Using a method based on Förster resonance energy transfer in mouse astrocytes, we have recently observed that a small rise in extracellular K+ can stimulate glycolysis by >300% within seconds. The K+ response was blocked by ouabain, but intracellular engagement of the Na+/K+ ATPase pump with Na+ was ineffective, suggesting that the canonical feedback regulatory pathway involving the Na+ pump and ATP depletion is only permissive and that a second mechanism is involved. Because of their predominant K+ permeability and high expression of the electrogenic Na+/HCO3− cotransporter NBCe1, astrocytes respond to a rise in extracellular K+ with plasma membrane depolarization and intracellular alkalinization. In the present article, we show that a fast glycolytic response can be elicited independently of K+ by plasma membrane depolarization or by intracellular alkalinization. The glycolytic response to K+ was absent in astrocytes from NBCe1 null mice (Slc4a4) and was blocked by functional or pharmacological inhibition of the NBCe1. Hippocampal neurons acquired K+-sensitive glycolysis upon heterologous NBCe1 expression. The phenomenon could also be reconstituted in HEK293 cells by coexpression of the NBCe1 and a constitutively open K+ channel. We conclude that the NBCe1 is a key element in a feedforward mechanism linking excitatory synaptic transmission to fast modulation of glycolysis in astrocytes.
PLOS ONE | 2012
Paola Navarrete; Fabien Magne; Cristian Araneda; Pamela Fuentes; Luis Felipe Barros; Rafael Opazo; Romilio T. Espejo; Jaime Romero
This study assessed the relative contributions of host genetics and diet in shaping the gut microbiota of rainbow trout. Full sibling fish from four unrelated families, each consisting of individuals derived from the mating of one male and one female belonging to a breeding program, were fed diets containing either vegetable proteins or vegetable oils for two months in comparison to a control diet consisting of only fish protein and fish oil. Two parallel approaches were applied on the same samples: transcriptionally active bacterial populations were examined based on RNA analysis and were compared with bacterial populations obtained from DNA analysis. Comparison of temporal temperature gradient gel electrophoresis (TTGE) profiles from DNA and RNA showed important differences, indicating that active bacterial populations were better described by RNA analysis. Results showed that some bacterial groups were significantly (P<0.05) associated with specific families, indicating that microbiota composition may be influenced by the host. In addition, the effect of diet on microbiota composition was dependent on the trout family.
The Journal of Physiology | 1997
Luis Felipe Barros; Michelle Young; Jeremy Saklatvala; Stephen A. Baldwin
1 Inhibitors of protein synthesis stimulate sugar transport in mammalian cells through activation of plasma membrane GLUT1, the housekeeping isoform of the glucose transporter. However, it has been reported that some of these compounds, in addition to their effect on protein synthesis, also activate protein kinases. 2 In the present study we have explored the role of these two effects on GLUT1 activation. In 3T3‐L1 adipocytes and Clone 9 cells, stimulation of sugar transport by puromycin, a translational inhibitor that does not activate kinases, was not detectable until 90 min after exposure. In contrast, stimulation by anisomycin, a potent Jun‐NH2‐terminal kinase (JNK) agonist, exhibited no lag phase. An intermediate response was observed to emetine and cycloheximide, weak activators of JNK. 3 The potency of anisomycin to stimulate transport acutely (30 min of exposure) was 5‐ to 10‐fold greater than for its chronic stimulation of transport, measured after 4 h of exposure. The stimulation of transport by a low concentration of anisomycin (0.3 μm) was transient, peaked at 30–60 min and it was inhibited (IC50 < 1 μm) by SB203580, which indicates that its mediator is not JNK, but the homologous p38(MAP kinase) (p38(MAPK)). In contrast, the responses to 4 h exposure to 300 μm anisomycin or puromycin were refractory to SB203580. 4 Exposure to anisomycin resulted in rapid activation of p38(MAPK). Activation of both p38(MAPK) and GLUT1 by 0.3 μm anisomycin was cancelled by puromycin. 5 We conclude that the activation of GLUT1 in response to anisomycin includes two components: a delayed component involving translational inhibition and a fast, puromycin‐inhibitable component that is secondary to activation of p38(MAPK).
Proceedings of the National Academy of Sciences of the United States of America | 2002
Claudio Hetz; María Rosa Bono; Luis Felipe Barros; Rosalba Lagos
The cytotoxic effect of microcin E492, a low-molecular-mass channel-forming bacteriocin (7,887 Da) produced by a strain of Klebsiella pneumoniae, was characterized in HeLa cells. At low (5 μg/ml) and intermediate (10 μg/ml) concentrations, microcin E492 induced biochemical and morphological changes typical of apoptosis, such as cell shrinkage, DNA fragmentation, extracellular exposure of phosphatidylserine, caspase activation, and loss of mitochondrial membrane potential. Treatment with zVAD-fmk, a general caspase inhibitor, completely blocked the cytotoxic effect of this bacteriocin. At higher microcin concentrations (>20 μg/ml) a necrotic phenotype was observed. Induction of apoptosis by microcin E492 was associated with the release of calcium from intracellular stores, probably after microcin-triggered ion channel formation. Microcin E492 also presented a cytotoxic effect on Jurkat and RJ2.25 cells, but had no effect on KG-1 cells nor on a primary culture of human tonsil endothelial cells, suggesting that there is a specific interaction of the bacteriocin with components of the target cell surface. This report describes a bacteriocin that has the capacity to induce apoptosis in human cell lines.
The Journal of Neuroscience | 2015
T. Sotelo-Hitschfeld; Niemeyer Mi; Philipp Mächler; Iván Ruminot; Rodrigo Lerchundi; Matthias T. Wyss; Jillian Stobart; Ignacio Fernández-Moncada; Rocío Valdebenito; Pamela Garrido-Gerter; Yasna Contreras-Baeza; Bernard L. Schneider; Patrick Aebischer; Sylvain Lengacher; A. San Martín; J. Le Douce; Gilles Bonvento; P. J. Magistretti; F. V. Sepulveda; Bruno Weber; Luis Felipe Barros
Excitatory synaptic transmission is accompanied by a local surge in interstitial lactate that occurs despite adequate oxygen availability, a puzzling phenomenon termed aerobic glycolysis. In addition to its role as an energy substrate, recent studies have shown that lactate modulates neuronal excitability acting through various targets, including NMDA receptors and G-protein-coupled receptors specific for lactate, but little is known about the cellular and molecular mechanisms responsible for the increase in interstitial lactate. Using a panel of genetically encoded fluorescence nanosensors for energy metabolites, we show here that mouse astrocytes in culture, in cortical slices, and in vivo maintain a steady-state reservoir of lactate. The reservoir was released to the extracellular space immediately after exposure of astrocytes to a physiological rise in extracellular K+ or cell depolarization. Cell-attached patch-clamp analysis of cultured astrocytes revealed a 37 pS lactate-permeable ion channel activated by cell depolarization. The channel was modulated by lactate itself, resulting in a positive feedback loop for lactate release. A rapid fall in intracellular lactate levels was also observed in cortical astrocytes of anesthetized mice in response to local field stimulation. The existence of an astrocytic lactate reservoir and its quick mobilization via an ion channel in response to a neuronal cue provides fresh support to lactate roles in neuronal fueling and in gliotransmission.
Glia | 2008
Omar H. Porras; Iván Ruminot; Anitsi Loaiza; Luis Felipe Barros
Glutamate triggers an acute stimulation of the glucose transporter GLUT1 in cultured astrocytes, a phenomenon thought to facilitate energy delivery to active areas in the brain. Here we have explored the cell signaling mechanisms involved in this response. Half‐stimulation of GLUT1 occurred at low micromolar glutamate, thus within the physiological range estimated in brain interstitium. The effect was mimicked by D‐aspartate and inhibited by L‐threo‐beta‐benzyloxyaspartate or Na+ replacement with NMDG+, showing the participation of the Na+‐glutamate co‐transporter. AMPA and the mGLURI agonist DHPG had no effect. The stimulation of GLUT1 was fully inhibited by ouabain, but independent activation of the Na+/K+ ATPase pump with gramicidin did not affect glucose transport. Simultaneous with the Na+ rise, glutamate and D‐aspartate triggered a Ca2+signal, whose inhibition with BAPTA prevented the stimulation of GLUT1. However, an isolated Ca2+ signal, triggered with endothelin 1, ATP or DHPG, did not affect glucose transport. The stimulation of GLUT1 could finally be mimicked by simultaneous induction of Na+ and Ca2+ signals. The requirement for both cations in the stimulation of the astrocytic glucose transporter, may help to explain how glucose metabolism in the brain is strongly activated by glutamate, but not by GABA or by inter‐astrocytic signaling.