Luis Garcia-Gancedo
University of Cambridge
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Luis Garcia-Gancedo.
Proceedings of the IEEE | 2012
Arokia Nathan; Arman Ahnood; Matthew T. Cole; Sungsik Lee; Yuji Suzuki; Pritesh Hiralal; Francesco Bonaccorso; Tawfique Hasan; Luis Garcia-Gancedo; Andriy Dyadyusha; Samiul Haque; Piers Andrew; Stephan Hofmann; James Moultrie; Daping Chu; Andrew J. Flewitt; A. C. Ferrari; M. J. Kelly; J. Robertson; G.A.J. Amaratunga; W. I. Milne
Thin-film electronics in its myriad forms has underpinned much of the technological innovation in the fields of displays, sensors, and energy conversion over the past four decades. This technology also forms the basis of flexible electronics. Here we review the current status of flexible electronics and attempt to predict the future promise of these pervading technologies in healthcare, environmental monitoring, displays and human-machine interactivity, energy conversion, management and storage, and communication and wireless networks.
Sensors | 2012
Zhigang Zhu; Luis Garcia-Gancedo; Andrew J. Flewitt; Huaqing Xie; Francis Moussy; W. I. Milne
There has been an explosion of research into the physical and chemical properties of carbon-based nanomaterials, since the discovery of carbon nanotubes (CNTs) by Iijima in 1991. Carbon nanomaterials offer unique advantages in several areas, like high surface-volume ratio, high electrical conductivity, chemical stability and strong mechanical strength, and are thus frequently being incorporated into sensing elements. Carbon nanomaterial-based sensors generally have higher sensitivities and a lower detection limit than conventional ones. In this review, a brief history of glucose biosensors is firstly presented. The carbon nanotube and grapheme-based biosensors, are introduced in Sections 3 and 4, respectively, which cover synthesis methods, up-to-date sensing approaches and nonenzymatic hybrid sensors. Finally, we briefly outline the current status and future direction for carbon nanomaterials to be used in the sensing area.
Langmuir | 2011
Xiubo Zhao; Fang Pan; Ben Cowsill; Jian R. Lu; Luis Garcia-Gancedo; Andrew J. Flewitt; Gregory M. Ashley; Jikui Luo
Antibody orientation and its antigen binding efficiency at interface are of particular interest in many immunoassays and biosensor applications. In this paper, spectroscopic ellipsometry (SE), neutron reflection (NR), and dual polarization interferometry (DPI) have been used to investigate interfacial assembly of the antibody [mouse monoclonal anti-human prostate-specific antigen (anti-hPSA)] at the silicon oxide/water interface and subsequent antigen binding. It was found that the mass density of antibody adsorbed at the interface increased with solution concentration and adsorption time while the antigen binding efficiency showed a steady decline with increasing antibody amount at the interface over the concentration range studied. The amount of antigen bound to the interfacial immobilized antibody reached a maximum when the surface-adsorbed amount of antibody was around 1.5 mg/m(2). This phenomenon is well interpreted by the interfacial structural packing or crowding. NR revealed that the Y-shaped antibody laid flat on the interface at low surface mass density with a thickness around 40 Å, equivalent to the short axial length of the antibody molecule. The loose packing of the antibody within this range resulted in better antigen binding efficiency, while the subsequent increase of surface-adsorbed amount led to the crowding or overlapping of antibody fragments, hence reducing the antigen binding due to the steric hindrance. In situ studies of antigen binding by both NR and DPI demonstrated that the antigen inserted into the antibody layer rather than forming an additional layer on the top. Stability assaying revealed that the antibody immobilized at the silica surface remained stable and active over the monitoring period of 4 months. These results are useful in forming a general understanding of antibody interfacial behavior and particularly relevant to the control of their activity and stability in biosensor development.
Biomicrofluidics | 2012
Yong Qing Fu; Luis Garcia-Gancedo; Hua-Feng Pang; Samuele Porro; Yan-Wei Gu; Jikui Luo; Xiaotao Zu; Frank Placido; J.I.B. Wilson; Andrew J. Flewitt; W. I. Milne
Surface acoustic wave (SAW) devices with 64 μm wavelength were fabricated on a zinc oxide (ZnO) film deposited on top of an ultra-smooth nanocrystalline diamond (UNCD) layer. The smooth surface of the UNCD film allowed the growth of the ZnO film with excellent c-axis orientation and low surface roughness, suitable for SAW fabrication, and could restrain the wave from significantly dissipating into the substrate. The frequency response of the fabricated devices was characterized and a Rayleigh mode was observed at ∼65.4 MHz. This mode was utilised to demonstrate that the ZnO/UNCD SAW device can be successfully used for microfluidic applications. Streaming, pumping, and jetting using microdroplets of 0.5 and 20 μl were achieved and characterized under different powers applied to the SAW device, focusing more on the jetting behaviors induced by the ZnO SAW.
Journal of Applied Physics | 2012
Luis Garcia-Gancedo; J. Pedrós; Zhigang Zhu; Andrew J. Flewitt; W. I. Milne; Jikui Luo; C. J. B. Ford
Highly c-axis oriented ZnO films have been deposited at room temperature with high rates (∼50 nm·min−1) using an innovative remote plasma sputtering configuration, which allows independent control of the plasma density and the sputtering ion energy. The ZnO films deposited possess excellent crystallographic orientation, high resistivity (>109 Ω·m), and exhibit very low surface roughness. The ability to increase the sputtering ion energy without causing unwanted Ar+ bombardment onto the substrate has been shown to be crucial for the growth of films with excellent c-axis orientation without the need of substrate heating. In addition, the elimination of the Ar+ bombardment has facilitated the growth of films with very low defect density and hence very low intrinsic stress (<100 MPa for 3 μm-thick films). This is over an order of magnitude lower than films grown with a standard magnetron sputtering system.
Journal of the Royal Society Interface | 2012
Xiubo Zhao; Fang Pan; Luis Garcia-Gancedo; Andrew J. Flewitt; Gregory M. Ashley; Jikui Luo; Jian R. Lu
The specific recognition between monoclonal antibody (anti-human prostate-specific antigen, anti-hPSA) and its antigen (human prostate-specific antigen, hPSA) has promising applications in prostate cancer diagnostics and other biosensor applications. However, because of steric constraints associated with interfacial packing and molecular orientations, the binding efficiency is often very low. In this study, spectroscopic ellipsometry and neutron reflection have been used to investigate how solution pH, salt concentration and surface chemistry affect antibody adsorption and subsequent antigen binding. The adsorbed amount of antibody was found to vary with pH and the maximum adsorption occurred between pH 5 and 6, close to the isoelectric point of the antibody. By contrast, the highest antigen binding efficiency occurred close to the neutral pH. Increasing the ionic strength reduced antibody adsorbed amount at the silica–water interface but had little effect on antigen binding. Further studies of antibody adsorption on hydrophobic C8 (octyltrimethoxysilane) surface and chemical attachment of antibody on (3-mercaptopropyl)trimethoxysilane/4-maleimidobutyric acid N-hydroxysuccinimide ester-modified surface have also been undertaken. It was found that on all surfaces studied, the antibody predominantly adopted the ‘flat on’ orientation, and antigen-binding capabilities were comparable. The results indicate that antibody immobilization via appropriate physical adsorption can replace elaborate interfacial molecular engineering involving complex covalent attachments.
Biosensors and Bioelectronics | 2012
Luis Garcia-Gancedo; J. Pedrós; Xiubo Zhao; G.M. Ashley; Andrew J. Flewitt; W. I. Milne; C. J. B. Ford; Jian R. Lu; Jikui Luo
Thin film bulk acoustic wave resonator (FBAR) devices supporting simultaneously multiple resonance modes have been designed for gravimetric sensing. The mechanism for dual-mode generation within a single device has been discussed, and theoretical calculations based on finite element analysis allowed the fabrication of FBARs whose resonance modes have opposite reactions to temperature changes; one of the modes exhibiting a positive frequency shift for a rise of temperature whilst the other mode exhibits a negative shift. Both modes exhibit negative frequency shift for a mass load and hence by monitoring simultaneously both modes it is possible to distinguish whether a change in the resonance frequency is due to a mass load or temperature variation (or a combination of both), avoiding false positive/negative responses in gravimetric sensing without the need of additional reference devices or complex electronics.
Journal of Micromechanics and Microengineering | 2012
X.L. He; Luis Garcia-Gancedo; Pengcheng Jin; Juehui Zhou; Wenbo B. Wang; Shurong Dong; Jikui Luo; Andrew J. Flewitt; W. I. Milne
A novel film bulk acoustic resonator (FBAR) with two resonant frequencies which have opposite reactions to temperature changes has been designed. The two resonant modes respond differently to changes in temperature and pressure, with the frequency shift being linearly correlated with temperature and pressure changes. By utilizing the FBARs sealed back trench as a cavity, an on-chip single FBAR sensor suitable for measuring pressure and temperature simultaneously is proposed and demonstrated. The experimental results show that the pressure coefficient of frequency for the lower frequency peak of the FBAR sensors is approximately −17.4 ppm kPa−1, while that for the second peak is approximately −6.1 ppm kPa−1, both of them being much more sensitive than other existing pressure sensors. This dual mode on-chip pressure sensor is simple in structure and operation, can be fabricated at very low cost, and yet requires no specific package, therefore has great potential for applications.
Journal of Applied Physics | 2011
J. Pedrós; Luis Garcia-Gancedo; C. J. B. Ford; C. H. W. Barnes; Jonathan Griffiths; G. A. C. Jones; Andrew J. Flewitt
The characteristics and dispersion of the distinct surface acoustic waves (SAWs) propagating in ZnO/GaAs heterostructures have been studied experimentally and theoretically. Besides the Rayleigh mode, strong Sezawa modes, which propagate confined in the overlayer, arise due to the smaller sound velocity in ZnO than in the substrate. The design parameters of the structure providing the strongest piezoelectric field at a given depth within the layered system for the different modes have been determined. The piezoelectric field of the Rayleigh mode is shown to be more than 10 times stronger at the interface region of the tailored ZnO/GaAs structure than at the surface region of the bulk GaAs, whereas the same comparison for the first Sezawa mode yields a factor of 2. This enhancement, together with the capacity of selecting waves with different piezoelectric and strain field depth profiles, will facilitate the development of SAW-modulated optoelectronic applications in GaAs-based systems.
internaltional ultrasonics symposium | 2007
Anne Bernassau; S. McKay; David Hutson; Christine Demore; Luis Garcia-Gancedo; T.W. Button; J. J. McAneny; S. Cochran
A key issue in the development of ultrasound imaging arrays to operate at frequencies above 30 MHz is the need for photolithographic patterning of array electrodes. To achieve this directly on a 1-3 piezocomposite requires planar, parallel and smooth surfaces. This paper reports an investigation of the surface finishing of 1-3 piezocomposite material by mechanical lapping and/polishing that has demonstrated that excellent surface flatness can be obtained. Subsequently, high frequency array elements have been fabricated on these surfaces using a low temperature lift-off photolithography process. A 50 MHz linear array with 30 mum element pitch has been patterned on the lapped and polished surface of a low frequency 1-3 piezocomposite. Good electrode edge definition and electrical contact to the composite were obtained. Additionally, patterning has been demonstrated on a fine-scale composite, itself suitable for operation above 30 MHz.