Luís L. Fonseca
Georgia Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Luís L. Fonseca.
Neurochemistry International | 2006
Sebastián Cerdán; Tiago B. Rodrigues; Alejandra Sierra; Marina Benito; Luís L. Fonseca; Carla P. Fonseca; María Luisa García-Martín
We provide an integrative interpretation of neuroglial metabolic coupling including the presence of subcellular compartmentation of pyruvate and monocarboxylate recycling through the plasma membrane of both neurons and glial cells. The subcellular compartmentation of pyruvate allows neurons and astrocytes to select between glucose and lactate as alternative substrates, depending on their relative extracellular concentration and the operation of a redox switch. This mechanism is based on the inhibition of glycolysis at the level of glyceraldehyde 3-phosphate dehydrogenase by NAD(+) limitation, under sufficiently reduced cytosolic NAD(+)/NADH redox conditions. Lactate and pyruvate recycling through the plasma membrane allows the return to the extracellular medium of cytosolic monocarboxylates enabling their transcellular, reversible, exchange between neurons and astrocytes. Together, intracellular pyruvate compartmentation and monocarboxylate recycling result in an effective transcellular coupling between the cytosolic NAD(+)/NADH redox states of both neurons and glial cells. Following glutamatergic neurotransmission, increased glutamate uptake by the astrocytes is proposed to augment glycolysis and tricarboxylic acid cycle activity, balancing to a reduced cytosolic NAD(+)/NADH in the glia. Reducing equivalents are transferred then to the neuron resulting in a reduced neuronal NAD(+)/NADH redox state. This may eventually switch off neuronal glycolysis, favoring the oxidation of extracellular lactate in the lactate dehydrogenase (LDH) equilibrium and in the neuronal tricarboxylic acid cycles. Finally, pyruvate derived from neuronal lactate oxidation, may return to the extracellular space and to the astrocyte, restoring the basal redox state and beginning a new loop of the lactate/pyruvate transcellular coupling cycle. Transcellular redox coupling operates through the plasma membrane transporters of monocarboxylates, similarly to the intracellular redox shuttles coupling the cytosolic and mitochondrial redox states through the transporters of the inner mitochondrial membrane. Finally, transcellular redox coupling mechanisms may couple glycolytic and oxidative zones in other heterogeneous tissues including muscle and tumors.
Molecular Microbiology | 2009
Rute Castro; Ana Rute Neves; Luís L. Fonseca; Wietske A. Pool; Jan Kok; Oscar P. Kuipers; Helena Santos
According to previous reports, Lactococcus lactis imports glucose via two distinct phosphoenolpyruvate:phosphotransferase systems (mannose‐PTS and cellobiose‐PTS) and one or more unknown non‐PTS permease(s). GlcU was identified as the sole non‐PTS permease involved in the transport of glucose. Additionally, the biochemical properties of PTSMan, PTSCel and GlcU were characterized in double knockout mutants with glucose uptake restricted to a single system. Transport susceptibility to protonophores indicated that glucose uptake via GlcU is proton‐motive force dependent. Competition assays revealed a high specificity of GlcU for glucose. Furthermore, the permease has low affinity for glucose and displays strong preference for the β‐anomer as shown by the profiles of consumption of the two glucose anomers studied by 13C‐NMR. Similar kinetic properties were found for PTSCel, while PTSMan is a high‐affinity system recognizing equally well the two anomeric forms of glucose. Transcripts of the genes encoding the three transporters are present simultaneously in the parent strain NZ9000 as shown by reverse transcription‐PCR. Investigation of the distribution of GlcU homologues among bacteria showed that these proteins are restricted to the low‐GC Gram‐positive Firmicutes. This work completes the identification of the glucose transport systems in L.u2003lactis MG1363.
Glia | 2005
Luís L. Fonseca; Miguel A.R. Monteiro; Paula M. Alves; Manuel J.T. Carrondo; Helena Santos
Glutamate metabolism in astrocytes was studied using an experimental setup that simulates the role of neurons (glutamate producers and glutamine consumers) by the addition of glutaminase to the culture medium. Thereby, a steady supply of glutamate was imposed at the expense of glutamine, and the stress intensity was manipulated by changing the glutaminase concentration. Glutamate supply rates in the range 8–23 nmol/min/mg protein were examined for periods of up to 48 h. When the glutamate supply rate exceeded the uptake rate of this amino acid, a transient increase in the extracellular concentration of glutamate was observed. In response to this stress, the fluxes through the glutamate transporter and glutamine synthetase were increased considerably, and the extracellular concentration of glutamate was eventually restored to a low level. The increased levels of glutamine synthetase were demonstrated by immunoblotting analysis. The effect on glutamate metabolism of the transaminase inhibitor, aminooxyacetic acid (AOAA), and of NH4Cl was also investigated. The supply of glutamate caused a concomitant reduction in the levels of phosphocreatine, phosphoethanolamine, and phosphocholine without affecting the ATP pool. Glutamine synthetase was shown to be is a key element in the control of glutamate metabolism in astrocytic cultures. The metabolic fate of glutamate depends greatly on the time of endurance to the challenge: in naive cells, glutamate was primarily metabolized through the transaminase pathway, while in well‐adapted cells glutamate was converted almost exclusively through glutamine synthetase.
Enzyme and Microbial Technology | 2011
César Fonseca; Kim Olofsson; Carla Ferreira; David Runquist; Luís L. Fonseca; Bärbel Hahn-Hägerdal; Gunnar Lidén
Ethanolic fermentation of lignocellulose raw materials requires industrial xylose-fermenting strains capable of complete and efficient D-xylose consumption. A central question in xylose fermentation by Saccharomyces cerevisiae engineered for xylose fermentation is to improve the xylose uptake. In the current study, the glucose/xylose facilitator Gxf1 from Candida intermedia, was expressed in three different xylose-fermenting S. cerevisiae strains of industrial origin. The in vivo effect on aerobic xylose growth and the initial xylose uptake rate were assessed. The expression of Gxf1 resulted in enhanced aerobic xylose growth only for the TMB3400 based strain. It displayed more than a 2-fold higher affinity for D-xylose than the parental strain and approximately 2-fold higher initial specific growth rate at 4 g/L D-xylose. Enhanced xylose consumption was furthermore observed when the GXF1-strain was assessed in simultaneous saccharification and co-fermentation (SSCF) of pretreated wheat straw. However, the ethanol yield remained unchanged due to increased by-product formation. Metabolic flux analysis suggested that the expression of the Gxf1 transporter had shifted the control of xylose catabolism from transport to the NAD(+) dependent oxidation of xylitol to xylulose.
Applied and Environmental Microbiology | 2014
Dušica Radoš; David L. Turner; Luís L. Fonseca; Ana Lúcia Carvalho; Bastian Blombach; Bernhard J. Eikmanns; Ana Rute Neves; Helena Santos
ABSTRACT Wild-type Corynebacterium glutamicum produces a mixture of lactic, succinic, and acetic acids from glucose under oxygen deprivation. We investigated the effect of CO2 on the production of organic acids in a two-stage process: cells were grown aerobically in glucose, and subsequently, organic acid production by nongrowing cells was studied under anaerobic conditions. The presence of CO2 caused up to a 3-fold increase in the succinate yield (1 mol per mol of glucose) and about 2-fold increase in acetate, both at the expense of l-lactate production; moreover, dihydroxyacetone formation was abolished. The redistribution of carbon fluxes in response to CO2 was estimated by using 13C-labeled glucose and 13C nuclear magnetic resonance (NMR) analysis of the labeling patterns in end products. The flux analysis showed that 97% of succinate was produced via the reductive part of the tricarboxylic acid cycle, with the low activity of the oxidative branch being sufficient to provide the reducing equivalents needed for the redox balance. The flux via the pentose phosphate pathway was low (∼5%) regardless of the presence or absence of CO2. Moreover, there was significant channeling of carbon to storage compounds (glycogen and trehalose) and concomitant catabolism of these reserves. The intracellular and extracellular pools of lactate and succinate were measured by in vivo NMR, and the stoichiometry (H+:organic acid) of the respective exporters was calculated. This study shows that it is feasible to take advantage of natural cellular regulation mechanisms to obtain high yields of succinate with C. glutamicum without genetic manipulation.
PLOS ONE | 2013
Ana Lúcia Carvalho; David L. Turner; Luís L. Fonseca; Ana Solopova; Teresa Catarino; Oscar P. Kuipers; Eberhard O. Voit; Ana Rute Neves; Helena Santos
The effect of pH on the glucose metabolism of non-growing cells of L. lactis MG1363 was studied by in vivo NMR in the range 4.8 to 6.5. Immediate pH effects on glucose transporters and/or enzyme activities were distinguished from transcriptional/translational effects by using cells grown at the optimal pH of 6.5 or pre-adjusted to low pH by growth at 5.1. In cells grown at pH 5.1, glucose metabolism proceeds at a rate 35% higher than in non-adjusted cells at the same pH. Besides the upregulation of stress-related genes (such as dnaK and groEL), cells adjusted to low pH overexpressed H+-ATPase subunits as well as glycolytic genes. At sub-optimal pHs, the total intracellular pool of lactic acid reached approximately 500 mM in cells grown at optimal pH and about 700 mM in cells grown at pH 5.1. These high levels, together with good pH homeostasis (internal pH always above 6), imply intracellular accumulation of the ionized form of lactic acid (lactate anion), and the concomitant export of the equivalent protons. The average number, n, of protons exported with each lactate anion was determined directly from the kinetics of accumulation of intra- and extracellular lactic acid as monitored online by 13C-NMR. In cells non-adjusted to low pH, n varies between 2 and 1 during glucose consumption, suggesting an inhibitory effect of intracellular lactate on proton export. We confirmed that extracellular lactate did not affect the lactate: proton stoichiometry. In adjusted cells, n was lower and varied less, indicating a different mix of lactic acid exporters less affected by the high level of intracellular lactate. A qualitative model for pH effects and acid stress adaptation is proposed on the basis of these results.
Journal of Neuroscience Research | 2007
Belén G. Ramírez; Tiago B. Rodrigues; Inês R. Violante; Fátima Cruz; Luís L. Fonseca; Paloma Ballesteros; M. Margarida C. A. Castro; Marı́a L. Garcı́a-Martı́n; Sebastián Cerdán
We investigate the mechanisms underlying the redox switch/redox coupling hypothesis by characterizing the competitive consumption of glucose or lactate and the kinetics of pyruvate production in primary cultures of cortical neurons and astrocytes from rat brain. Glucose consumption was determined in neuronal cultures incubated in Krebs ringer bicarbonate buffer (KRB) containing 0.25–5 mM glucose, in the presence and absence of 5 mM lactate as an alternative substrate. Lactate consumption was measured in neuronal cultures incubated with 1–15 mM lactate, in the presence and absence of 1 mM glucose. In both cases, the alternative substrate increased the Km (mM) values for glucose consumption (from 2.2 ± 0.2 to 3.6 ± 0.1) or lactate consumption (from 7.8 ± 0.1 to 8.5 ± 0.1) without significant changes on the corresponding Vmax. This is consistent with a competitive inhibition between the simultaneous consumption of glucose and lactate. When cultures of neurons or astrocytes were incubated with increasing lactate concentrations 1–20 mM, pyruvate production was observed with Km (mM) and Vmax (nmol/mg/h) values of 1.0 ± 0.1 and 109 ± 4 in neurons, or 0.28 ± 0.1 and 342 ± 54 in astrocytes. Thus, astrocytes or neurons are able to return to the incubation medium as pyruvate, a significant part of the lactate consumed. Present results support the reversible exchange of reducing equivalents between neurons and astrocytes in the form of lactate or pyruvate. Monocarboxylate exchange is envisioned to operate under near equilibrium, with the transcellular flux directed thermodynamically toward the more oxidized intracellular redox environment.
Iet Systems Biology | 2009
Eberhard O. Voit; G. Goel; I-Chun Chou; Luís L. Fonseca
Parameter estimation is the main bottleneck of metabolic pathway modelling. It may be addressed from the bottom up, using information on metabolites, enzymes and modulators, or from the top down, using metabolic time series data, which have become more prevalent in recent years. The authors propose here that it is useful to combine the two strategies and to complement time-series analysis with kinetic information. In particular, the authors investigate how the recent method of dynamic flux estimation (DFE) may be supplemented with other types of estimation. Using the glycolytic pathway in Lactococcus lactis as an illustration example, the authors demonstrate some strategies of such supplementation.
PLOS Computational Biology | 2013
Po-Wei Chen; Luís L. Fonseca; Yusuf A. Hannun; Eberhard O. Voit
The regulatory roles of sphingolipids in diverse cell functions have been characterized extensively. However, the dynamics and interactions among the different sphingolipid species are difficult to assess, because de novo biosynthesis, metabolic inter-conversions, and the retrieval of sphingolipids from membranes form a complex, highly regulated pathway system. Here we analyze the heat stress response of this system in the yeast Saccharomyces cerevisiae and demonstrate how the cell dynamically adjusts its enzyme profile so that it is appropriate for operation under stress conditions before changes in gene expression become effective. The analysis uses metabolic time series data, a complex mathematical model, and a custom-tailored optimization strategy. The results demonstrate that all enzyme activities rapidly increase in an immediate response to the elevated temperature. After just a few minutes, different functional clusters of enzymes follow distinct activity patterns. Interestingly, starting after about six minutes, both de novo biosynthesis and all exit routes from central sphingolipid metabolism become blocked, and the remaining metabolic activity consists entirely of an internal redistribution among different sphingoid base and ceramide pools. After about 30 minutes, heat stress is still in effect and the enzyme activity profile is still significantly changed. Importantly, however, the metabolites have regained concentrations that are essentially the same as those under optimal conditions.
Journal of Neuroscience Research | 2001
Luís L. Fonseca; Paula M. Alves; Manuel J.T. Carrondo; Helena Santos
Nuclear magnetic resonance was used as the primary technique to investigate the effect of ethanol (40, 80, and 160 mM) on the levels of high‐energy phosphates, glycolytic flux, anaplerotic and oxidative fluxes to the tricarboxylic acid (TCA) cycle, the contribution of the pentose phosphate pathway (PPP), and the uptake and release of amino acids on primary cultures of rat astrocytes. On line 31P‐NMR spectroscopy showed that long‐term exposure to ethanol caused a drop in the levels of ATP and phosphocreatine. The ratio between the fluxes through the pyruvate dehydrogenase and pyruvate carboxylase reactions also decreased, whereas the glycolytic flux and the ratio between formation of lactate and glucose consumption increased when cells were exposed to acute doses of ethanol. Flux through the pentose phosphate pathway was not affected. The uptake of cysteine and the release of glutamine were stimulated by ethanol, whereas the release of methionine was inhibited. Moreover, the fractional enrichment in serine was enhanced. The changes in the amino acid metabolism are interpreted as a response to oxidative stress induced by ethanol.