Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luís M. A. Bettencourt is active.

Publication


Featured researches published by Luís M. A. Bettencourt.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Growth, innovation, scaling, and the pace of life in cities

Luís M. A. Bettencourt; José Lobo; Dirk Helbing; Christian Kühnert; Geoffrey B. West

Humanity has just crossed a major landmark in its history with the majority of people now living in cities. Cities have long been known to be societys predominant engine of innovation and wealth creation, yet they are also its main source of crime, pollution, and disease. The inexorable trend toward urbanization worldwide presents an urgent challenge for developing a predictive, quantitative theory of urban organization and sustainable development. Here we present empirical evidence indicating that the processes relating urbanization to economic development and knowledge creation are very general, being shared by all cities belonging to the same urban system and sustained across different nations and times. Many diverse properties of cities from patent production and personal income to electrical cable length are shown to be power law functions of population size with scaling exponents, β, that fall into distinct universality classes. Quantities reflecting wealth creation and innovation have β ≈1.2 >1 (increasing returns), whereas those accounting for infrastructure display β ≈0.8 <1 (economies of scale). We predict that the pace of social life in the city increases with population size, in quantitative agreement with data, and we discuss how cities are similar to, and differ from, biological organisms, for which β<1. Finally, we explore possible consequences of these scaling relations by deriving growth equations, which quantify the dramatic difference between growth fueled by innovation versus that driven by economies of scale. This difference suggests that, as population grows, major innovation cycles must be generated at a continually accelerating rate to sustain growth and avoid stagnation or collapse.


Science | 2013

The Origins of Scaling in Cities

Luís M. A. Bettencourt

The Equations Underlying Cities Cities are complex systems of which functioning depends upon many social, economic, and environmental factors. Bettencourt (p. 1438; see the cover; see the Perspective by Batty) developed a theory to explain the quantitative relationships observed between various aspects of cities and population size or land area. Cities of all sizes can be modeled as interdependent networks of interactions and infrastructure. [Also see Perspective by Batty] Despite the increasing importance of cities in human societies, our ability to understand them scientifically and manage them in practice has remained limited. The greatest difficulties to any scientific approach to cities have resulted from their many interdependent facets, as social, economic, infrastructural, and spatial complex systems that exist in similar but changing forms over a huge range of scales. Here, I show how all cities may evolve according to a small set of basic principles that operate locally. A theoretical framework was developed to predict the average social, spatial, and infrastructural properties of cities as a set of scaling relations that apply to all urban systems. Confirmation of these predictions was observed for thousands of cities worldwide, from many urban systems at different levels of development. Measures of urban efficiency, capturing the balance between socioeconomic outputs and infrastructural costs, were shown to be independent of city size and might be a useful means to evaluate urban planning strategies.


Nature | 2010

A unified theory of urban living

Luís M. A. Bettencourt; Geoffrey B. West

It is time for a science of how city growth affects society and environment, say Luis Bettencourt and Geoffrey West.


Physica A-statistical Mechanics and Its Applications | 2006

The power of a good idea: Quantitative modeling of the spread of ideas from epidemiological models

Luís M. A. Bettencourt; Ariel Cintrón-Arias; David Kaiser; Carlos Castillo-Chavez

The population dynamics underlying the diffusion of ideas hold many qualitative similarities to those involved in the spread of infections. In spite of much suggestive evidence this analogy is hardly ever quantified in useful ways. The standard benefit of modeling epidemics is the ability to estimate quantitatively population average parameters, such as interpersonal contact rates, incubation times, duration of infectious periods, etc. In most cases such quantities generalize naturally to the spread of ideas and provide a simple means of quantifying sociological and behavioral patterns. Here we apply several paradigmatic models of epidemics to empirical data on the advent and spread of Feynman diagrams through the theoretical physics communities of the USA, Japan, and the USSR in the period immediately after World War II. This test case has the advantage of having been studied historically in great detail, which allows validation of our results. We estimate the effectiveness of adoption of the idea in the three communities and find values for parameters reflecting both intentional social organization and long lifetimes for the idea. These features are probably general characteristics of the spread of ideas, but not of common epidemics.


Journal of the Royal Society Interface | 2007

Comparative estimation of the reproduction number for pandemic influenza from daily case notification data

Gerardo Chowell; Hiroshi Nishiura; Luís M. A. Bettencourt

The reproduction number, , defined as the average number of secondary cases generated by a primary case, is a crucial quantity for identifying the intensity of interventions required to control an epidemic. Current estimates of the reproduction number for seasonal influenza show wide variation and, in particular, uncertainty bounds for for the pandemic strain from 1918 to 1919 have been obtained only in a few recent studies and are yet to be fully clarified. Here, we estimate using daily case notifications during the autumn wave of the influenza pandemic (Spanish flu) in the city of San Francisco, California, from 1918 to 1919. In order to elucidate the effects from adopting different estimation approaches, four different methods are used: estimation of using the early exponential-growth rate (Method 1), a simple susceptible–exposed–infectious–recovered (SEIR) model (Method 2), a more complex SEIR-type model that accounts for asymptomatic and hospitalized cases (Method 3), and a stochastic susceptible–infectious–removed (SIR) with Bayesian estimation (Method 4) that determines the effective reproduction number at a given time t. The first three methods fit the initial exponential-growth phase of the epidemic, which was explicitly determined by the goodness-of-fit test. Moreover, Method 3 was also fitted to the whole epidemic curve. Whereas the values of obtained using the first three methods based on the initial growth phase were estimated to be 2.98 (95% confidence interval (CI): 2.73, 3.25), 2.38 (2.16, 2.60) and 2.20 (1.55, 2.84), the third method with the entire epidemic curve yielded a value of 3.53 (3.45, 3.62). This larger value could be an overestimate since the goodness-of-fit to the initial exponential phase worsened when we fitted the model to the entire epidemic curve, and because the model is established as an autonomous system without time-varying assumptions. These estimates were shown to be robust to parameter uncertainties, but the theoretical exponential-growth approximation (Method 1) shows wide uncertainty. Method 4 provided a maximum-likelihood effective reproduction number 2.10 (1.21, 2.95) using the first 17 epidemic days, which is consistent with estimates obtained from the other methods and an estimate of 2.36 (2.07, 2.65) for the entire autumn wave. We conclude that the reproduction number for pandemic influenza (Spanish flu) at the city level can be robustly assessed to lie in the range of 2.0–3.0, in broad agreement with previous estimates using distinct data.


PLOS ONE | 2010

Urban Scaling and Its Deviations: Revealing the Structure of Wealth, Innovation and Crime across Cities

Luís M. A. Bettencourt; José Lobo; Deborah Strumsky; Geoffrey B. West

With urban population increasing dramatically worldwide, cities are playing an increasingly critical role in human societies and the sustainability of the planet. An obstacle to effective policy is the lack of meaningful urban metrics based on a quantitative understanding of cities. Typically, linear per capita indicators are used to characterize and rank cities. However, these implicitly ignore the fundamental role of nonlinear agglomeration integral to the life history of cities. As such, per capita indicators conflate general nonlinear effects, common to all cities, with local dynamics, specific to each city, failing to provide direct measures of the impact of local events and policy. Agglomeration nonlinearities are explicitly manifested by the superlinear power law scaling of most urban socioeconomic indicators with population size, all with similar exponents (1.15). As a result larger cities are disproportionally the centers of innovation, wealth and crime, all to approximately the same degree. We use these general urban laws to develop new urban metrics that disentangle dynamics at different scales and provide true measures of local urban performance. New rankings of cities and a novel and simpler perspective on urban systems emerge. We find that local urban dynamics display long-term memory, so cities under or outperforming their size expectation maintain such (dis)advantage for decades. Spatiotemporal correlation analyses reveal a novel functional taxonomy of U.S. metropolitan areas that is generally not organized geographically but based instead on common local economic models, innovation strategies and patterns of crime.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Evolution and structure of sustainability science

Luís M. A. Bettencourt; Jasleen Kaur

The concepts of sustainable development have experienced extraordinary success since their advent in the 1980s. They are now an integral part of the agenda of governments and corporations, and their goals have become central to the mission of research laboratories and universities worldwide. However, it remains unclear how far the field has progressed as a scientific discipline, especially given its ambitious agenda of integrating theory, applied science, and policy, making it relevant for development globally and generating a new interdisciplinary synthesis across fields. To address these questions, we assembled a corpus of scholarly publications in the field and analyzed its temporal evolution, geographic distribution, disciplinary composition, and collaboration structure. We show that sustainability science has been growing explosively since the late 1980s when foundational publications in the field increased its pull on new authors and intensified their interactions. The field has an unusual geographic footprint combining contributions and connecting through collaboration cities and nations at very different levels of development. Its decomposition into traditional disciplines reveals its emphasis on the management of human, social, and ecological systems seen primarily from an engineering and policy perspective. Finally, we show that the integration of these perspectives has created a new field only in recent years as judged by the emergence of a giant component of scientific collaboration. These developments demonstrate the existence of a growing scientific field of sustainability science as an unusual, inclusive and ubiquitous scientific practice and bode well for its continued impact and longevity.


PLOS ONE | 2009

Clickstream data yields high-resolution maps of science

Johan Bollen; Herbert Van de Sompel; Aric Hagberg; Luís M. A. Bettencourt; Ryan Chute; Marko A. Rodriguez; Lyudmila Balakireva

Background Intricate maps of science have been created from citation data to visualize the structure of scientific activity. However, most scientific publications are now accessed online. Scholarly web portals record detailed log data at a scale that exceeds the number of all existing citations combined. Such log data is recorded immediately upon publication and keeps track of the sequences of user requests (clickstreams) that are issued by a variety of users across many different domains. Given these advantages of log datasets over citation data, we investigate whether they can produce high-resolution, more current maps of science. Methodology Over the course of 2007 and 2008, we collected nearly 1 billion user interactions recorded by the scholarly web portals of some of the most significant publishers, aggregators and institutional consortia. The resulting reference data set covers a significant part of world-wide use of scholarly web portals in 2006, and provides a balanced coverage of the humanities, social sciences, and natural sciences. A journal clickstream model, i.e. a first-order Markov chain, was extracted from the sequences of user interactions in the logs. The clickstream model was validated by comparing it to the Getty Research Institutes Architecture and Art Thesaurus. The resulting model was visualized as a journal network that outlines the relationships between various scientific domains and clarifies the connection of the social sciences and humanities to the natural sciences. Conclusions Maps of science resulting from large-scale clickstream data provide a detailed, contemporary view of scientific activity and correct the underrepresentation of the social sciences and humanities that is commonly found in citation data.


Physical Review E | 2007

Functional structure of cortical neuronal networks grown in vitro.

Luís M. A. Bettencourt; Greg J. Stephens; Michael I. Ham; Guenter W. Gross

We apply an information-theoretic treatment of action potential time series measured with microelectrode arrays to estimate the connectivity of mammalian neuronal cell assemblies grown in vitro. We infer connectivity between two neurons via the measurement of the mutual information between their spike trains. In addition we measure higher-point multi-information between any two spike trains, conditional on the activity of a third cell, as a means to identify and distinguish classes of functional connectivity among three neurons. The use of a conditional three-cell measure removes some interpretational shortcomings of the pairwise mutual information and sheds light on the functional connectivity arrangements of any three cells. We analyze the resultant connectivity graphs in light of other complex networks and demonstrate that, despite their ex vivo development, the connectivity maps derived from cultured neural assemblies are similar to other biological networks and display nontrivial structure in clustering coefficient, network diameter, and assortative mixing. Specifically we show that these networks are weakly disassortative small-world graphs, which differ significantly in their structure from randomized graphs with the same degree. We expect our analysis to be useful in identifying the computational motifs of a wide variety of complex networks, derived from time series data.


Journal of the Royal Society Interface | 2014

The scaling of human interactions with city size

Markus Schläpfer; Luís M. A. Bettencourt; Sebastian Grauwin; Mathias Raschke; Rob Claxton; Zbigniew Smoreda; Geoffrey B. West; Carlo Ratti

The size of cities is known to play a fundamental role in social and economic life. Yet, its relation to the structure of the underlying network of human interactions has not been investigated empirically in detail. In this paper, we map society-wide communication networks to the urban areas of two European countries. We show that both the total number of contacts and the total communication activity grow superlinearly with city population size, according to well-defined scaling relations and resulting from a multiplicative increase that affects most citizens. Perhaps surprisingly, however, the probability that an individuals contacts are also connected with each other remains largely unaffected. These empirical results predict a systematic and scale-invariant acceleration of interaction-based spreading phenomena as cities get bigger, which is numerically confirmed by applying epidemiological models to the studied networks. Our findings should provide a microscopic basis towards understanding the superlinear increase of different socioeconomic quantities with city size, that applies to almost all urban systems and includes, for instance, the creation of new inventions or the prevalence of certain contagious diseases.

Collaboration


Dive into the Luís M. A. Bettencourt's collaboration.

Top Co-Authors

Avatar

Garrett T. Kenyon

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Steven P. Brumby

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Vadas Gintautas

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

José Lobo

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

John S. George

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Michael I. Ham

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Kaiser

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Michael Ham

Los Alamos National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge