Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luis M. Colon-Perez is active.

Publication


Featured researches published by Luis M. Colon-Perez.


Magnetic Resonance in Medicine | 2014

On random walks and entropy in diffusion-weighted magnetic resonance imaging studies of neural tissue.

Carson Ingo; Richard L. Magin; Luis M. Colon-Perez; William Triplett; Thomas H. Mareci

In diffusion‐weighted MRI studies of neural tissue, the classical model assumes the statistical mechanics of Brownian motion and predicts a monoexponential signal decay. However, there have been numerous reports of signal decays that are not monoexponential, particularly in the white matter.


Frontiers in Human Neuroscience | 2013

Imaging white matter in human brainstem

Anastasia Ford; Luis M. Colon-Perez; William Triplett; Joseph M. Gullett; Thomas H. Mareci; David B. FitzGerald

The human brainstem is critical for the control of many life-sustaining functions, such as consciousness, respiration, sleep, and transfer of sensory and motor information between the brain and the spinal cord. Most of our knowledge about structure and organization of white and gray matter within the brainstem is derived from ex vivo dissection and histology studies. However, these methods cannot be applied to study structural architecture in live human participants. Tractography from diffusion-weighted magnetic resonance imaging (MRI) may provide valuable insights about white matter organization within the brainstem in vivo. However, this method presents technical challenges in vivo due to susceptibility artifacts, functionally dense anatomy, as well as pulsatile and respiratory motion. To investigate the limits of MR tractography, we present results from high angular resolution diffusion imaging of an intact excised human brainstem performed at 11.1 T using isotropic resolution of 0.333, 1, and 2 mm, with the latter reflecting resolution currently used clinically. At the highest resolution, the dense fiber architecture of the brainstem is evident, but the definition of structures degrades as resolution decreases. In particular, the inferred corticopontine/corticospinal tracts (CPT/CST), superior (SCP) and middle cerebellar peduncle (MCP), and medial lemniscus (ML) pathways are clearly discernable and follow known anatomical trajectories at the highest spatial resolution. At lower resolutions, the CST/CPT, SCP, and MCP pathways are artificially enlarged due to inclusion of collinear and crossing fibers not inherent to these three pathways. The inferred ML pathways appear smaller at lower resolutions, indicating insufficient spatial information to successfully resolve smaller fiber pathways. Our results suggest that white matter tractography maps derived from the excised brainstem can be used to guide the study of the brainstem architecture using diffusion MRI in vivo.


Neurotoxicology | 2012

Magnetic resonance imaging and volumetric analysis: Novel tools to study the effects of thyroid hormone disruption on white matter development

Michael Powell; Hao Van Nguyen; M.E. Gilbert; Mansi B. Parekh; Luis M. Colon-Perez; Thomas H. Mareci; Eric W. Montie

Humans and wildlife are exposed to environmental pollutants that have been shown to interfere with the thyroid hormone system and thus may affect brain development. Our goal was to expose pregnant rats to propylthiouracil (PTU) to measure the effects of a goitrogen on white matter development in offspring using magnetic resonance imaging (MRI) and volumetric analysis. We exposed pregnant Sprague Dawley (SD) rats to 3 or 10 ppm PTU from gestation day 7 (GD7) until postnatal day 25 (P25) to determine the effects on white matter (WM), gray matter (GM), and hippocampus volumes in offspring. We sacrificed offspring at P25 but continued the life of some offspring to P90 to measure persistent effects in adult animals. P25 offspring exposed to 10 ppm PTU displayed lowered levels of triiodothyronine (T3) and thyroxine (T4); cerebral WM, GM, and total brain volumes were significantly lower than the volumes in control animals. P90 adults exposed to 10 ppm PTU displayed normal T3 levels but lowered T4 levels; WM, GM, total brain, and hippocampal volumes were significantly lower than the volumes in control adults. Both P25 and P90 rats exposed to 10 ppm PTU displayed significant reductions in percent WM as well as heterotopias in the corpus callosum. Exposure to 3 ppm PTU did not produce any significant effects. These results suggest that MRI coupled with volumetric analysis is a powerful tool in assessing the effects of thyroid hormone disruption on white matter development and brain structure. This approach holds great promise in assessing neurotoxicity of xenobiotics in humans and wildlife.


Neuropsychopharmacology | 2016

The Psychoactive Designer Drug and Bath Salt Constituent MDPV Causes Widespread Disruption of Brain Functional Connectivity.

Luis M. Colon-Perez; Kelvin Tran; Khalil Thompson; Michael C Pace; Kenneth Blum; Bruce A. Goldberger; Mark S. Gold; Adriaan W. Bruijnzeel; Barry Setlow; Marcelo Febo

The abuse of ‘bath salts’ has raised concerns because of their adverse effects, which include delirium, violent behavior, and suicide ideation in severe cases. The bath salt constituent 3,4-methylenedioxypyrovalerone (MDPV) has been closely linked to these and other adverse effects. The abnormal behavioral pattern produced by acute high-dose MDPV intake suggests possible disruptions of neural communication between brain regions. Therefore, we determined if MDPV exerts disruptive effects on brain functional connectivity, particularly in areas of the prefrontal cortex. Male rats were imaged following administration of a single dose of MDPV (0.3, 1.0, or 3.0 mg/kg) or saline. Resting state brain blood oxygenation level-dependent (BOLD) images were acquired at 4.7 T. To determine the role of dopamine transmission in MDPV-induced changes in functional connectivity, a group of rats received the dopamine D1/D2 receptor antagonist cis-flupenthixol (0.5 mg/kg) 30 min before MDPV. MDPV dose-dependently reduced functional connectivity. Detailed analysis of its effects revealed that connectivity between frontal cortical and striatal areas was reduced. This included connectivity between the prelimbic prefrontal cortex and other areas of the frontal cortex and the insular cortex with hypothalamic, ventral, and dorsal striatal areas. Although the reduced connectivity appeared widespread, connectivity between these regions and somatosensory cortex was not as severely affected. Dopamine receptor blockade did not prevent the MDPV-induced decrease in functional connectivity. The results provide a novel signature of MDPV’s in vivo mechanism of action. Reduced brain functional connectivity has been reported in patients suffering from psychosis and has been linked to cognitive dysfunction, audiovisual hallucinations, and negative affective states akin to those reported for MDPV-induced intoxication. The present results suggest that disruption of functional connectivity networks involving frontal cortical and striatal regions could contribute to the adverse effects of MDPV.


NeuroImage: Clinical | 2015

High-field magnetic resonance imaging of the human temporal lobe

Luis M. Colon-Perez; Michael King; Mansi Bharat Parekh; Angelique E Boutzoukas; Eduardo Carmona; Michelle Couret; Rosemary Klassen; Thomas H. Mareci; Paul R. Carney

Background Emerging high-field diffusion weighted MR imaging protocols, along with tractography, can elucidate microstructural changes associated with brain disease at the sub-millimeter image resolution. Epilepsy and other neurological disorders are accompanied by structural changes in the hippocampal formation and associated regions; however, these changes can be subtle and on a much smaller scale than the spatial resolution commonly obtained by current clinical magnetic resonance (MR) protocols in vivo. Methods We explored the possibility of studying the organization of fresh tissue with a 17.6 Tesla magnet using diffusion MR imaging and tractography. The mesoscale organization of the temporal lobe was estimated using a fresh unfixed specimen obtained from a subject who underwent anterior temporal lobectomy for medically refractory temporal lobe epilepsy (TLE). Following ex vivo imaging, the tissue was fixed, serial-sectioned, and stained for correlation with imaging. Findings We resolved tissue microstructural organizational features in the temporal lobe from diffusion MR imaging and tractography in fresh tissue. Conclusions Fresh ex vivo MR imaging, along with tractography, revealed complex intra-temporal structural variation corresponding to neuronal cell body layers, dendritic fields, and axonal projection systems evident histologically. This is the first study to describe in detail the human temporal lobe structural organization using high-field MR imaging and tractography. By preserving the 3-dimensional structures of the hippocampus and surrounding structures, specific changes in anatomy may inform us about the changes that occur in TLE in relation to the disease process and structural underpinnings in epilepsy-related memory dysfunction.


PLOS ONE | 2015

Dimensionless, Scale Invariant, Edge Weight Metric for the Study of Complex Structural Networks

Luis M. Colon-Perez; Caitlin Spindler; Shelby Goicochea; William Triplett; Mansi B. Parekh; Eric W. Montie; Paul R. Carney; Catherine C. Price; Thomas H. Mareci

High spatial and angular resolution diffusion weighted imaging (DWI) with network analysis provides a unique framework for the study of brain structure in vivo. DWI-derived brain connectivity patterns are best characterized with graph theory using an edge weight to quantify the strength of white matter connections between gray matter nodes. Here a dimensionless, scale-invariant edge weight is introduced to measure node connectivity. This edge weight metric provides reasonable and consistent values over any size scale (e.g. rodents to humans) used to quantify the strength of connection. Firstly, simulations were used to assess the effects of tractography seed point density and random errors in the estimated fiber orientations; with sufficient signal-to-noise ratio (SNR), edge weight estimates improve as the seed density increases. Secondly to evaluate the application of the edge weight in the human brain, ten repeated measures of DWI in the same healthy human subject were analyzed. Mean edge weight values within the cingulum and corpus callosum were consistent and showed low variability. Thirdly, using excised rat brains to study the effects of spatial resolution, the weight of edges connecting major structures in the temporal lobe were used to characterize connectivity in this local network. The results indicate that with adequate resolution and SNR, connections between network nodes are characterized well by this edge weight metric. Therefore this new dimensionless, scale-invariant edge weight metric provides a robust measure of network connectivity that can be applied in any size regime.


Neuroscience Letters | 2016

Depressed basal hypothalamic neuronal activity in type-1 diabetic mice is correlated with proinflammatory secretion of HMBG1.

Jeffrey S. Thinschmidt; Luis M. Colon-Perez; Marcelo Febo; Sergio Caballero; Michael A. King; Fletcher A. White; Maria B. Grant

We recently found indicators of hypothalamic inflammation and neurodegeneration linked to the loss of neuroprotective factors including insulin-like growth factor (IGF-1) and IGF binding protein-2 (IGFBP-3) in mice made diabetic using streptozotocin (STZ). In the current work, a genetic model of type-1 diabetes (Ins2(Akita) mouse) was used to evaluate changes in neuronal activity and concomitant changes in the proinflammatory mediator high-mobility group box-1 (HMBG1). We found basal hypothalamic neuronal activity as indicated by manganese-enhanced magnetic resonance imaging (MEMRI) was significantly decreased in 8 months old, but not 2 months old Ins2(Akita) diabetic mice compared to controls. In tissue from the same animals we evaluated the expression of HMBG1 using immunohistochemistry and confocal microscopy. We found decreased HMBG1 nuclear localization in the paraventricular nucleus of the hypothalamus (PVN) in 8 months old, but not 2 months old diabetic animals indicating nuclear release of the protein consistent with an inflammatory state. Adjacent thalamic regions showed little change in HMBG1 nuclear localization and neuronal activity as a result of diabetes. This work extends our previous findings demonstrating changes consistent with hypothalamic neuroinflammation in STZ treated animals, and shows active inflammatory processes are correlated with changes in basal hypothalamic neuronal activity in Ins2(Akita) mice.


Neurobiology of Disease | 2016

In vivo imaging reveals impaired connectivity across cortical and subcortical networks in a mouse model of DYT1 dystonia

Jesse C. DeSimone; Marcelo Febo; Priyank Shukla; Edward Ofori; Luis M. Colon-Perez; Yuqing Li; David E. Vaillancourt

Developing in vivo functional and structural neuroimaging assays in Dyt1 ΔGAG heterozygous knock-in (Dyt1 KI) mice provide insight into the pathophysiology underlying DYT1 dystonia. In the current study, we examined in vivo functional connectivity of large-scale cortical and subcortical networks in Dyt1 KI mice and wild-type (WT) controls using resting-state functional magnetic resonance imaging (MRI) and an independent component analysis. In addition, using diffusion MRI we examined how structural integrity across the basal ganglia and cerebellum directly relates to impairments in functional connectivity. Compared to WT mice, Dyt1 KI mice revealed increased functional connectivity across the striatum, thalamus, and somatosensory cortex; and reduced functional connectivity in the motor and cerebellar cortices. Further, Dyt1 KI mice demonstrated elevated free-water (FW) in the striatum and cerebellum compared to WT mice, and increased FW was correlated with impairments in functional connectivity across basal ganglia, cerebellum, and sensorimotor cortex. The current study provides the first in vivo MRI-based evidence in support of the hypothesis that the deletion of a 3-base pair (ΔGAG) sequence in the Dyt1 gene encoding torsinA has network level effects on in vivo functional connectivity and microstructural integrity across the sensorimotor cortex, basal ganglia, and cerebellum.


Stem Cells | 2017

Electroacupuncture Promotes Central Nervous System-Dependent Release of Mesenchymal Stem Cells

Tatiana Salazar; Matthew R. Richardson; Eleni Beli; Matthew S. Ripsch; John George; Youngsook Kim; Yaqian Duan; Leni Moldovan; Yuanqing Yan; Ashay D. Bhatwadekar; Vaishnavi Jadhav; Jared A. Smith; Susan P. McGorray; Alicia L. Bertone; Dmitri O. Traktuev; Keith L. March; Luis M. Colon-Perez; Keith G. Avin; Emily Sims; Julie A. Mund; Jamie Case; Xiaolin Deng; Min Su Kim; Bruce McDavitt; Michael E. Boulton; Jeffrey S. Thinschmidt; Sergio Li Calzi; Stephanie D. Fitz; Robyn K. Fuchs; Stuart J. Warden

Electroacupuncture (EA) performed in rats and humans using limb acupuncture sites, LI‐4 and LI‐11, and GV‐14 and GV‐20 (humans) and Bai‐hui (rats) increased functional connectivity between the anterior hypothalamus and the amygdala and mobilized mesenchymal stem cells (MSCs) into the systemic circulation. In human subjects, the source of the MSC was found to be primarily adipose tissue, whereas in rodents the tissue sources were considered more heterogeneous. Pharmacological disinhibition of rat hypothalamus enhanced sympathetic nervous system (SNS) activation and similarly resulted in a release of MSC into the circulation. EA‐mediated SNS activation was further supported by browning of white adipose tissue in rats. EA treatment of rats undergoing partial rupture of the Achilles tendon resulted in reduced mechanical hyperalgesia, increased serum interleukin‐10 levels and tendon remodeling, effects blocked in propranolol‐treated rodents. To distinguish the afferent role of the peripheral nervous system, phosphoinositide‐interacting regulator of transient receptor potential channels (Pirt)‐GCaMP3 (genetically encoded calcium sensor) mice were treated with EA acupuncture points, ST‐36 and LIV‐3, and GV‐14 and Bai‐hui and resulted in a rapid activation of primary sensory neurons. EA activated sensory ganglia and SNS centers to mediate the release of MSC that can enhance tissue repair, increase anti‐inflammatory cytokine production and provide pronounced analgesic relief. Stem Cells 2017;35:1303–1315


Frontiers in Physiology | 2017

A Single Angiotensin II Hypertensive Stimulus Is Associated with Prolonged Neuronal and Immune System Activation in Wistar-Kyoto Rats

Jasenka Zubcevic; Monica M. Santisteban; Pablo D. Perez; Rebeca Arocha; Helmut Hiller; Wendi Malphurs; Luis M. Colon-Perez; Ravindra K. Sharma; Annette D. de Kloet; Eric G. Krause; Marcelo Febo; Mohan K. Raizada

Activation of autonomic neural pathways by chronic hypertensive stimuli plays a significant role in pathogenesis of hypertension. Here, we proposed that even a single acute hypertensive stimulus will activate neural and immune pathways that may be important in initiation of memory imprinting seen in chronic hypertension. We investigated the effects of acute angiotensin II (Ang II) administration on blood pressure, neural activation in cardioregulatory brain regions, and central and systemic immune responses, at 1 and 24 h post-injection. Administration of a single bolus intra-peritoneal (I.P.) injection of Ang II (36 μg/kg) resulted in a transient increase in the mean arterial pressure (MAP) (by 22 ± 4 mmHg vs saline), which returned to baseline within 1 h. However, in contrast to MAP, neuronal activity, as measured by manganese-enhanced magnetic resonance (MEMRI), remained elevated in several cardioregulatory brain regions over 24 h. The increase was predominant in autonomic regions, such as the subfornical organ (SFO; ~20%), paraventricular nucleus of the hypothalamus (PVN; ~20%) and rostral ventrolateral medulla (RVLM; ~900%), among others. Similarly, systemic and central immune responses, as evidenced by circulating levels of CD4+/IL17+ T cells, and increased IL17 levels and activation of microglia in the PVN, respectively, remained elevated at 24 h following Ang II challenge. Elevated Fos expression in the PVN was also present at 24 h (by 73 ± 11%) following Ang II compared to control saline injections, confirming persistent activation of PVN. Thus, even a single Ang II hypertensive stimulus will initiate changes in neuronal and immune cells that play a role in the developing hypertensive phenotype.

Collaboration


Dive into the Luis M. Colon-Perez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard L. Magin

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carson Ingo

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge