Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luis M. Corrochano is active.

Publication


Featured researches published by Luis M. Corrochano.


PLOS Genetics | 2009

Genomic Analysis of the Basal Lineage Fungus Rhizopus oryzae Reveals a Whole-Genome Duplication

Li-Jun Ma; Ashraf S. Ibrahim; Christopher D. Skory; Manfred Grabherr; Gertraud Burger; Margi I. Butler; Marek Eliáš; Alexander Idnurm; B. Franz Lang; Teruo Sone; Ayumi Abe; Sarah E. Calvo; Luis M. Corrochano; Reinhard Engels; Jianmin Fu; Wilhelm Hansberg; Jung Mi Kim; Chinnappa D. Kodira; Michael Koehrsen; Bo Liu; Diego Miranda-Saavedra; Sinéad B. O'Leary; Lucila Ortiz-Castellanos; Russell T. M. Poulter; Julio Rodríguez-Romero; José Ruiz-Herrera; Yao Qing Shen; Qiandong Zeng; James E. Galagan; Bruce W. Birren

Rhizopus oryzae is the primary cause of mucormycosis, an emerging, life-threatening infection characterized by rapid angioinvasive growth with an overall mortality rate that exceeds 50%. As a representative of the paraphyletic basal group of the fungal kingdom called “zygomycetes,” R. oryzae is also used as a model to study fungal evolution. Here we report the genome sequence of R. oryzae strain 99–880, isolated from a fatal case of mucormycosis. The highly repetitive 45.3 Mb genome assembly contains abundant transposable elements (TEs), comprising approximately 20% of the genome. We predicted 13,895 protein-coding genes not overlapping TEs, many of which are paralogous gene pairs. The order and genomic arrangement of the duplicated gene pairs and their common phylogenetic origin provide evidence for an ancestral whole-genome duplication (WGD) event. The WGD resulted in the duplication of nearly all subunits of the protein complexes associated with respiratory electron transport chains, the V-ATPase, and the ubiquitin–proteasome systems. The WGD, together with recent gene duplications, resulted in the expansion of multiple gene families related to cell growth and signal transduction, as well as secreted aspartic protease and subtilase protein families, which are known fungal virulence factors. The duplication of the ergosterol biosynthetic pathway, especially the major azole target, lanosterol 14α-demethylase (ERG11), could contribute to the variable responses of R. oryzae to different azole drugs, including voriconazole and posaconazole. Expanded families of cell-wall synthesis enzymes, essential for fungal cell integrity but absent in mammalian hosts, reveal potential targets for novel and R. oryzae-specific diagnostic and therapeutic treatments.


Genome Research | 2011

Comparative genomics of citric-acid-producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88

Mikael Rørdam Andersen; Margarita Salazar; Peter J. Schaap; Peter J. I. van de Vondervoort; David E. Culley; Jette Thykaer; Jens Christian Frisvad; Kristian Fog Nielsen; Richard Albang; Kaj Albermann; Randy M. Berka; Gerhard H. Braus; Susanna A. Braus-Stromeyer; Luis M. Corrochano; Piet W.M. van Dijck; Gerald Hofmann; Linda L. Lasure; Jon K. Magnuson; Hildegard Menke; Martin Meijer; Susan Lisette Meijer; Jakob Blæsbjerg Nielsen; Michael Lynge Nielsen; Albert J.J. van Ooyen; Herman Jan Pel; Lars Kongsbak Poulsen; R.A. Samson; Hein Stam; Adrian Tsang; Johannes Maarten Van Den Brink

The filamentous fungus Aspergillus niger exhibits great diversity in its phenotype. It is found globally, both as marine and terrestrial strains, produces both organic acids and hydrolytic enzymes in high amounts, and some isolates exhibit pathogenicity. Although the genome of an industrial enzyme-producing A. niger strain (CBS 513.88) has already been sequenced, the versatility and diversity of this species compel additional exploration. We therefore undertook whole-genome sequencing of the acidogenic A. niger wild-type strain (ATCC 1015) and produced a genome sequence of very high quality. Only 15 gaps are present in the sequence, and half the telomeric regions have been elucidated. Moreover, sequence information from ATCC 1015 was used to improve the genome sequence of CBS 513.88. Chromosome-level comparisons uncovered several genome rearrangements, deletions, a clear case of strain-specific horizontal gene transfer, and identification of 0.8 Mb of novel sequence. Single nucleotide polymorphisms per kilobase (SNPs/kb) between the two strains were found to be exceptionally high (average: 7.8, maximum: 160 SNPs/kb). High variation within the species was confirmed with exo-metabolite profiling and phylogenetics. Detailed lists of alleles were generated, and genotypic differences were observed to accumulate in metabolic pathways essential to acid production and protein synthesis. A transcriptome analysis supported up-regulation of genes associated with biosynthesis of amino acids that are abundant in glucoamylase A, tRNA-synthases, and protein transporters in the protein producing CBS 513.88 strain. Our results and data sets from this integrative systems biology analysis resulted in a snapshot of fungal evolution and will support further optimization of cell factories based on filamentous fungi.


Genetics | 2011

Regulation of Conidiation by Light in Aspergillus nidulans

Carmen Ruger-Herreros; Julio Rodríguez-Romero; Raul Fernández-Barranco; María Olmedo; Reinhard Fischer; Luis M. Corrochano; David Cánovas

Light regulates several aspects of the biology of many organisms, including the balance between asexual and sexual development in some fungi. To understand how light regulates fungal development at the molecular level we have used Aspergillus nidulans as a model. We have performed a genome-wide expression analysis that has allowed us to identify >400 genes upregulated and >100 genes downregulated by light in developmentally competent mycelium. Among the upregulated genes were genes required for the regulation of asexual development, one of the major biological responses to light in A. nidulans, which is a pathway controlled by the master regulatory gene brlA. The expression of brlA, like conidiation, is induced by light. A detailed analysis of brlA light regulation revealed increased expression after short exposures with a maximum after 60 min of light followed by photoadaptation with longer light exposures. In addition to brlA, genes flbA–C and fluG are also light regulated, and flbA–C are required for the correct light-dependent regulation of the upstream regulator fluG. We have found that light induction of brlA required the photoreceptor complex composed of a phytochrome FphA, and the white-collar homologs LreA and LreB, and the fluffy genes flbA–C. We propose that the activation of regulatory genes by light is the key event in the activation of asexual development by light in A. nidulans.


Mycologia | 2006

New findings of Neurospora in Europe and comparisons of diversity in temperate climates on continental scales.

David J. Jacobson; Jeremy R. Dettman; Rachel I. Adams; Cornelia Boesl; Shahana Sultana; Till Roenneberg; Martha Merrow; Margarida Duarte; Isabel Marques; Alexandra V. Ushakova; Patrícia Carneiro; Arnaldo Videira; Laura Navarro-Sampedro; María Olmedo; Luis M. Corrochano; John W. Taylor

The life cycles of the conidiating species of Neurospora are adapted to respond to fire, which is reflected in their natural history. Neurospora is found commonly on burned vegetation from the tropic and subtropical regions around the world and through the temperate regions of western North America. In temperate Europe it was unknown whether Neurospora would be as common as it is in North America because it has been reported only occasionally. In 2003 and 2004 a multinational effort surveyed wildfire sites in southern Europe. Neurospora was found commonly from southern Portugal and Spain (37 degrees N) to Switzerland (46 degrees N). Species collected included N. crassa, N. discreta, N. sitophila and N. tetrasperma. The species distribution and spatial dynamics of Neurospora populations showed both similarities and differences when compared between temperate Europe and western North America, both regions of similar latitude, climate and vegetation. For example the predominant species in western North America, N. discreta phylogenetic species 4B, is common but not predominant in Europe, whereas species rare in western North America, N. crassa NcB and N. sitophila, are much more common in Europe. The meiotic drive element Spore killer was also common in European populations of N. sitophila and at a higher proportion than anywhere else in the world. The methods by which organisms spread and adapt to new environments are fundamental ecosystem properties, yet they are little understood. The differences in regional diversity, reported here, can form the basis of testable hypotheses. Questions of phylogeography and adaptations can be addressed specifically by studying Neurospora in nature.


Molecular Genetics and Genomics | 1990

ISOLATION AND MOLECULAR ANALYSIS OF THE OROTIDINE-5'-PHOSPHATE DECARBOXYLASE GENE (PYRG) OF PHYCOMYCES BLAKESLEEANUS

José María Díaz-Mínguez; Enrique A. Iturriaga; Ernesto P. Benito; Luis M. Corrochano; Arturo P. Eslava

SummaryThe pyrG gene of Phycomyces was isolated from a Phycomyces genomic library, constructed in the cosmid pHS255, by hybridization with a 170 bp fragment of the pyrG gene of Aspergillus niger. This fragment includes a consensus sequence found in almost all species in which the orotidine-5′-phosphate decarboxylase (OMPdecase) gene has been sequenced. The complete nucleotide sequence of the cloned pyrG gene from Phycomyces was determined and the transcription start sites mapped. In the predicted amino acid sequence there are regions of strong homology to the equivalent genes of Saccharomyces cerevisiae, A. niger, Schizophyllum commune and Homo sapiens. Analysis of the sequence revealed the presence of two introns. The precise length and location of these introns was determined by sequencing the pyrG cDNA and comparing it with the genomic clone. Non-coding flanking regions showed obvious homology to the consensus TATA and CAAT boxes, and the polyadenylation signal “AATAAA”. The pyrG gene is the second Phycomyces gene that has been cloned and analysed. This is the first time that introns have been reported in Phycomyces.


Trends in Genetics | 1992

Sex, light and carotenes: the development of Phycomyces

Luis M. Corrochano; Enrique Cerdá-Olmedo

Phycomyces blakesleeanus is known for the elaborate behaviour of its sporangiophores (fruiting bodies). Sporangiophore development is exquisitely sensitive to blue light, easy to describe quantitatively, pliable to genetic and biochemical research, and reminiscent in many details of other photoresponses in the same and in other organisms. The developmental and behavioural processes of Phycomyces share a number of genes. A combinatorial use of gene expression appears to be the basis for the complexities observed in this fungus.


Fungal Genetics and Biology | 2010

A complex photoreceptor system mediates the regulation by light of the conidiation genes con-10 and con-6 in Neurospora crassa.

María Olmedo; Carmen Ruger-Herreros; Eva M. Luque; Luis M. Corrochano

Genes con-10 and con-6 in Neurospora crassa are activated during conidiation or after illumination of vegetative mycelia. Light activation requires the white-collar complex (WCC), a transcription factor complex composed of the photoreceptor WC-1 and its partner WC-2. We have characterized the photoactivation of con-10 and con-6, and we have identified 300bp required for photoactivation in the con-10 promoter. A complex stimulus-response relationship for con-10 and con-6 photoactivation suggested the activity of a complex photoreceptor system. The WCC is the key element for con-10 activation by light, but we suggest that other photoreceptors, the cryptochrome CRY-1, the rhodopsin NOP-1, and the phytochrome PHY-2, modify the activity of the WCC for con-10 photoactivation, presumably through a repressor. In addition we show that the regulatory protein VE-1 is required for full photocarotenogenesis. We propose that these proteins may modulate the WCC in a gene-specific way.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Phycomyces MADB interacts with MADA to form the primary photoreceptor complex for fungal phototropism

Catalina Sanz; Julio Rodríguez-Romero; Alexander Idnurm; John M. Christie; Joseph Heitman; Luis M. Corrochano; Arturo P. Eslava

The fungus Phycomyces blakesleeanus reacts to environmental signals, including light, gravity, touch, and the presence of nearby objects, by changing the speed and direction of growth of its fruiting body (sporangiophore). Phototropism, growth toward light, shares many features in fungi and plants but the molecular mechanisms remain to be fully elucidated. Phycomyces mutants with altered phototropism were isolated ≈40 years ago and found to have mutations in the mad genes. All of the responses to light in Phycomyces require the products of the madA and madB genes. We showed that madA encodes a protein similar to the Neurospora blue-light photoreceptor, zinc-finger protein WC-1. We show here that madB encodes a protein similar to the Neurospora zinc-finger protein WC-2. MADA and MADB interact to form a complex in yeast 2-hybrid assays and when coexpressed in E. coli, providing evidence that phototropism and other responses to light are mediated by a photoresponsive transcription factor complex. The Phycomyces genome contains 3 genes similar to wc-1, and 4 genes similar to wc-2, many of which are regulated by light in a madA or madB dependent manner. We did not detect any interactions between additional WC proteins in yeast 2-hybrid assays, which suggest that MADA and MADB form the major photoreceptor complex in Phycomyces. However, the presence of multiple wc genes in Phycomyces may enable perception across a broad range of light intensities, and may provide specialized photoreceptors for distinct photoresponses.


Fungal Genetics and Biology | 2010

Photobiology in the Zygomycota: multiple photoreceptor genes for complex responses to light.

Luis M. Corrochano; Victoriano Garre

Light is an environmental signal that modulates many aspects of the biology of zygomycete fungi. Light regulation has been investigated in the zygomycetes Phycomyces blakesleeanus, Mucor circinelloides and Pilobolus crystallinus. Examples of light regulation include the phototropism of the fruiting bodies, the regulation of the development of reproductive structures, and the activation of the biosynthesis of β-carotene. In fungi blue light is perceived by proteins homologous to WC-1, a Neurospora crassa photoreceptor and Zn finger protein that interacts with WC-2 to form a photoresponsive transcription factor complex. Unlike ascomycete and basidiomycete fungi that usually have one wc-1 and one wc-2 gene, several studies have uncovered an unexpected multitude of genes similar to wc-1 and wc-2 in the genomes of several zygomycete fungi. Some of these genes are required for fungal photoresponses, but the function of many of them remains unknown. The presence of multiple wc-1 genes confirms previous suggestions of multiple blue-light photoreceptors in Phycomyces.


Planta | 1988

Photomorphogenesis inPhycomyces: Fluence-response curves and action spectra

Luis M. Corrochano; Paul Galland; Edward D. Lipson; Enrique Cerdá-Olmedo

Blue light regulates vegetative reproduction inPhycomyces blakesleeanus Bgff. by inhibiting the development of microphores and stimulating that of macrophores. Fluence-response curves were obtained at twelve different wavelengths. Each response exhibits a two-step (“biphasic”) dependence on fluence, as if it resulted from the addition of two separate components with different thresholds, midpoints, and amplitudes. The absolute threshold is close to 10 photons·μm2. The threshold fluence of the low-intensity component is about 104 times smaller than that of the high-intensity component. The action spectra for each of the two components of the two responses share general similarities, but exhibit significant differences that might be taken to favour four separate photosystems. Additional complexity is indicated by the wavelength dependence of the saturation levels.

Collaboration


Dive into the Luis M. Corrochano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge