Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luis M. Gaspar Venancio is active.

Publication


Featured researches published by Luis M. Gaspar Venancio.


Optics Express | 2012

Polarization scramblers with plasmonic meander-type metamaterials

Philipp Schau; Liwei Fu; Karsten Frenner; Martin Schäferling; H. Schweizer; Harald Giessen; Luis M. Gaspar Venancio; Wolfgang Osten

Due to plasmonic excitations, metallic meander structures exhibit an extraordinarily high transmission within a well-defined pass band. Within this frequency range, they behave like almost ideal linear polarizers, can induce large phase retardation between s- and p-polarized light and show a high polarization conversion efficiency. Due to these properties, meander structures can interact very effectively with polarized light. In this report, we suggest a novel polarization scrambler design using spatially distributed metallic meander structures with random angular orientations. The whole device has an optical response averaged over all pixel orientations within the incident beam diameter. We characterize the depolarizing properties of the suggested polarization scrambler with the Mueller matrix and investigate both single layer and stacked meander structures at different frequencies. The presented polarization scrambler can be flexibly designed to work at any wavelength in the visible range with a bandwidth of up to 100 THz. With our preliminary design, we achieve depolarization rates larger than 50% for arbitrarily polarized monochromatic and narrow-band light. Circularly polarized light could be depolarized by up to 95% at 600 THz.


Optical Interference Coatings 2016 (2016), paper MC.2 | 2016

Advanced dielectric coatings for the Euclid mission telescope manufactured by the PARMS process

Marc Lappschies; Thomas Weber; Luis M. Gaspar Venancio; Stefan Jakobs

The extraordinary specification for the dichroic beamsplitter inside the Euclid telescope requires very complex coatings. Design issues considering the several boundary conditions are discussed and results from the current development are presented.


Proceedings of SPIE | 2008

Programmable spectrometer using MOEMS devices for space applications

Thierry Viard; Christophe Buisset; Xavier Rejeaunier; Frederic Zamkotsian; Luis M. Gaspar Venancio

A new class of spectrometer can be designed using programmable components such as MOEMS which enable to tune the beam in spectral width and central wavelength. It becomes possible to propose for space applications a spectrometer with programmable resolution and adjustable spectral bandwidth. The proposed way to tune the output beam is to use the diffraction effect with the so-called PMDG (Programmable Micro Diffraction Gratings) diffractive MEMS. In that case, small moving structures can form programmable gratings, diffracting or not the incoming light. In the proposed concept, the MOEMS is placed in the focal plane of a first diffracting stage (using a grating for instance). With such implementation, the MOEMS component can be used to select some wavelengths (for instance by reflecting them) and to switch-off the others (for instance by diffracting them). A second diffracting stage is used to recombine the beam composed by all the selected wavelengths. It becomes then possible to change and adjust the filter in λ and Δλ. This type of implementation is very interesting for space applications (astronomy, Earth observation, planetary observation). Firstly because it becomes possible to tune the filtering function quasi instantaneously. And secondly because the focal plane dimension can be reduced to a single detector (for application without field of view) or to a linear detector instead of a 2D matrix detector (for application with field of view) thanks to a sequential acquisition of the signal.


Reliability, Packaging, Testing, and Characterization of MEMS/MOEMS and Nanodevices X | 2011

MOEMS for prospective space applications

Thierry Viard; Christophe Buisset; Frederic Zamkotsian; Vincent Costes; Luis M. Gaspar Venancio

We are involved with ESA and CNES since several years, in the analysis of space applications using MOEMS components. A first concept using a Programmable Micro Diffracting Device (PMDG) has been proposed for an astronomical spectrometer with a small field of view. In this application the introduction of a MOEMS component has allowed to reduce the focal plane complexity (one mono detector) and to increase the mission adaptability to the target (programmable mission). An opto mechanical concept has been proposed and first performance assessed. A second concept has been studied and deals with the use of a MOEMS component to realize an innovative spectrometer, so-called convolution spectrometer. In the proposed solution, a MOEMS is used to realize a shifting spectral window (large spectral width) associated to a slight spectral increment. The signal given by the detector being the convolution between the target spectral density and the spectral window, it is then possible to recover the target spectral signal by a deconvolution. A breadboard has been developed, and the concept of the convolution spectrometer has been successfully demonstrated. Finally, some results of analysis will be also given concerning the use of a DMD for Earth observation associated to a push broom detection mode and a large field of view.


Proceedings of SPIE | 2016

Euclid end-to-end straylight performance assessment

Luis M. Gaspar Venancio; Charlotte Pachot; Lionel Carminati; Jose Lorenzo Alvarez; Jérôme Amiaux; Eric Prieto; Luciana Bonino; Jean-Christophe Salvignol; Alex Short; Tobias Boenke; Paulo Strada; R. J. Laureijs

In the Euclid mission the straylight has been identified at an early stage as the main driver for the final imaging quality of the telescope. The assessment by simulation of the final straylight in the focal plane of both instruments in Euclid’s payload have required a complex workflow involving all stakeholders in the mission, from industry to the scientific community. The straylight is defined as a Normalized Detector Irradiance (NDI) which is a convenient definition tool to separate the contributions of the telescope and of the instruments. The end-to-end straylight of the payload is then simply the sum of the NDIs of the telescope and of each instrument. The NDIs for both instruments are presented in this paper for photometry and spectrometry.


Proceedings of SPIE | 2014

Euclid payload module: telescope characteristics and technical challenges

Luis M. Gaspar Venancio; R. J. Laureijs; Jose Lorenzo; Jean-Christophe Salvignol; Alex Short; Paolo Strada; Roland Vavrek; Corrado Gennaro; Jérôme Amiaux; Eric Prieto

Euclid is an European Space Agency (ESA) mission to map the geometry of the dark Universe. The mission will investigate the distance-redshift relationship and the evolution of cosmic structures. It will achieve this by measuring shapes and redshifts of galaxies and clusters of galaxies out to redshifts ~2, equivalent to 10 billion years back in time. Euclid will make use of two primary cosmological probes, in a wide survey over the full extragalactic sky : the Weak Gravitational Lensing (WL) and Baryon Acoustic Oscillations (BAO). The main goal of the Euclid payload module (PLM) is to provide high quality imaging of galaxies and accurate measurement (less than 0.1%) of galaxies redshift over a large field of view (FoV). The present paper focuses on the telescope of the PLM excluding the instruments. We present a brief introduction to the Euclid PLM system and will report how the constraints of each instrument have driven the definition of the telescope-to-instrument optical interfaces. Furthermore we introduce the description of the telescope optical characteristics and report its nominal performances. Finally, the technical challenges to be faced by ESA’s industrial partners are underlined.


Proceedings of SPIE | 2012

Investigation on the high efficiency volume Bragg gratings performances for spectrometry in space environment: preliminary results

Jerôme Loicq; Luis M. Gaspar Venancio; Marc Georges

The special properties of Volume Bragg Gratings (VBGs) make them good candidates for spectrometry applications where high spectral resolution, low level of straylight and low polarisation sensitivity are required. Therefore it is of interest to assess the maturity and suitability of VBGs as enabling technology for future ESA missions with demanding requirements for spectrometry. The VBGs suitability for space application is being investigated in the frame of a project led by CSL and funded by the European Space Agency. The goal of this work is twofold: first the theoretical advantages and drawbacks of VBGs with respect to other technologies with identical functionalities are assessed, and second the performances of VBG samples in a representative space environment are experimentally evaluated. The performances of samples of two VBGs technologies, the Photo-Thermo-Refractive (PTR) glass and the DiChromated Gelatine (DCG), are assessed and compared in the Hα, O2-B and NIR bands. The tests are performed under vacuum condition combined with temperature cycling in the range of 200 K to 300K. A dedicated test bench experiment is designed to evaluate the impact of temperature on the spectral efficiency and to determine the optical wavefront error of the diffracted beam. Furthermore the diffraction efficiency degradation under gamma irradiation is assessed. Finally the straylight, the diffraction efficiency under conical incidence and the polarisation sensitivity is evaluated.


International Conference on Space Optics 2012 | 2017

Investigation on high efficiency volume Bragg gratings performances for spectrometry in space environment

Jerôme Loicq; Luis M. Gaspar Venancio; Yvan Stockman; Marc Georges

The special properties of Volume Bragg Gratings (VBGs) make them good candidates for spectrometry applications where high spectral resolution, low level of straylight and low polarisation sensitivity are required. Therefore it is of interest to assess the maturity and suitability of VBGs as enabling technology for future ESA missions with demanding requirements for spectrometry. The VBGs suitability for space application is being investigated in the frame of a project led by CSL and funded by the European Space Agency. The goal of this work is twofold: first the theoretical advantages and drawbacks of VBGs with respect to other technologies with identical functionalities are assessed, and second the performances of VBG samples in a representative space environment are experimentally evaluated. The performances of samples of two VBGs technologies, the Photo-Thermo-Refractive (PTR) glass and the DiChromated Gelatine (DCG), are assessed and compared in the Hα, O2-B and NIR bands. The tests are performed under vacuum condition combined with temperature cycling in the range of 200 K to 300K. A dedicated test bench experiment is designed to evaluate the impact of temperature on the spectral efficiency and to determine the optical wavefront error of the diffracted beam. Furthermore the diffraction efficiency degradation under gamma irradiation is assessed. Finally the straylight, the diffraction efficiency under conical incidence and the polarisation sensitivity is evaluated.


International Conference on Space Optics 2008 | 2017

Programmable spectrometer using MOEMs devices for space applications

Christophe Buisset; Xavier Rejeaunier; Thierry Viard; Frederic Zamkotsian; Luis M. Gaspar Venancio

A new class of spectrometer can be designed using programmable components such as MOEMS which enable to tune the beam in spectral width and central wavelength. It becomes possible to propose for space applications a spectrometer with programmable resolution and adjustable spectral bandwidth. The proposed way to tune the output beam is to use the diffraction effect with the so-called PMDG (Programmable Micro Diffraction Gratings ) diffractive MEMS. In that case, small moving structures can form programmable gratings, diffracting or not the incoming light. In the proposed concept, the MOEMS is placed in the focal plane of a first diffracting stage (using a grating for instance). With such implementation, the MOEMS component can be used to select some wavelengths (for instance by reflecting them) and to switch-off the others (for instance by diffracting them). A second diffracting stage is used to recombine the beam composed by all the selected wavelengths. It becomes then possible to change and adjust the filter in λ and Δλ. This type of implementation is very interesting for space applications (Astronomy, Earth observation, planetary observation). Firstly because it becomes possible to tune the filtering function quasi instantaneously. And secondly because the focal plane dimension can be reduced to a single detector (for application without field of view) or to a linear detector instead of a 2D matrix detector (for application with field of view) thanks to a sequential acquisition of the signal.


Proceedings of SPIE | 2016

Coating induced phase shift and impact on Euclid imaging performance

Luis M. Gaspar Venancio; Lionel Carminati; Jose Lorenzo Alvarez; Jérôme Amiaux; Luciana Bonino; Jean-Christophe Salvignol; Roland Vavrek; R. J. Laureijs; Alex Short; Tobias Boenke; Paulo Strada

The challenging constraints imposed on the Euclid telescope imaging performances have driven the design, manufacturing and characterisation of the multi-layers coatings of the dichroic. Indeed it was found that the coatings layers thickness inhomogeneity will introduce a wavelength dependent phase-shift resulting in degradation of the image quality of the telescope. Such changes must be characterized and/or simulated since they could be non-negligible contributors to the scientific performance accuracy. Several papers on this topic can be found in literature, however the results can not be applied directly to Euclid’s dichroic coatings. In particular an applicable model of the phase-shift variation with the wavelength could not be found and was developed. The results achieved with the mathematical model are compared to experimental results of tests performed on a development prototype of the Euclid’s dichroic.

Collaboration


Dive into the Luis M. Gaspar Venancio's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge