Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luis Manuel Frutos is active.

Publication


Featured researches published by Luis Manuel Frutos.


Journal of Computational Chemistry | 2016

MOLCAS 8: New Capabilities for Multiconfigurational Quantum Chemical Calculations across the Periodic Table

Francesco Aquilante; Jochen Autschbach; Rebecca K. Carlson; Liviu F. Chibotaru; Mickaël G. Delcey; Luca De Vico; Ignacio Fdez. Galván; Nicolas Ferré; Luis Manuel Frutos; Laura Gagliardi; Marco Garavelli; Angelo Giussani; Chad E. Hoyer; Giovanni Li Manni; Hans Lischka; Dongxia Ma; Per Åke Malmqvist; Thomas Müller; Artur Nenov; Massimo Olivucci; Thomas Bondo Pedersen; Daoling Peng; Felix Plasser; Ben Pritchard; Markus Reiher; Ivan Rivalta; Igor Schapiro; Javier Segarra-Martí; Michael Stenrup; Donald G. Truhlar

In this report, we summarize and describe the recent unique updates and additions to the Molcas quantum chemistry program suite as contained in release version 8. These updates include natural and spin orbitals for studies of magnetic properties, local and linear scaling methods for the Douglas–Kroll–Hess transformation, the generalized active space concept in MCSCF methods, a combination of multiconfigurational wave functions with density functional theory in the MC‐PDFT method, additional methods for computation of magnetic properties, methods for diabatization, analytical gradients of state average complete active space SCF in association with density fitting, methods for constrained fragment optimization, large‐scale parallel multireference configuration interaction including analytic gradients via the interface to the Columbus package, and approximations of the CASPT2 method to be used for computations of large systems. In addition, the report includes the description of a computational machinery for nonlinear optical spectroscopy through an interface to the QM/MM package Cobramm. Further, a module to run molecular dynamics simulations is added, two surface hopping algorithms are included to enable nonadiabatic calculations, and the DQ method for diabatization is added. Finally, we report on the subject of improvements with respects to alternative file options and parallelization.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Tracking the excited-state time evolution of the visual pigment with multiconfigurational quantum chemistry

Luis Manuel Frutos; Tadeusz Andruniów; Fabrizio Santoro; Nicolas Ferré; Massimo Olivucci

The primary event that initiates vision is the photoinduced isomerization of retinal in the visual pigment rhodopsin (Rh). Here, we use a scaled quantum mechanics/molecular mechanics potential that reproduces the isomerization path determined with multiconfigurational perturbation theory to follow the excited-state evolution of bovine Rh. The analysis of a 140-fs trajectory provides a description of the electronic and geometrical changes that prepare the system for decay to the ground state. The data uncover a complex change of the retinal backbone that, at ≈60-fs delay, initiates a space saving “asynchronous bicycle-pedal or crankshaft” motion, leading to a conical intersection on a 110-fs time scale. It is shown that the twisted structure achieved at decay features a momentum that provides a natural route toward the photoRh structure recently resolved by using femtosecond-stimulated Raman spectroscopy.


Journal of the American Chemical Society | 2011

The ultrafast photoisomerizations of rhodopsin and bathorhodopsin are modulated by bond length alternation and HOOP driven electronic effects.

Igor Schapiro; Mikhail N. Ryazantsev; Luis Manuel Frutos; Nicolas Ferré; Roland Lindh; Massimo Olivucci

Rhodopsin (Rh) and bathorhodopsin (bathoRh) quantum-mechanics/molecular-mechanics models based on ab initio multiconfigurational wave functions are employed to look at the light induced π-bond breaking and reconstitution occurring during the Rh → bathoRh and bathoRh → Rh isomerizations. More specifically, semiclassical trajectory computations are used to compare the excited (S(1)) and ground (S(0)) state dynamics characterizing the opposite steps of the Rh/bathoRh photochromic cycle during the first 200 fs following photoexcitation. We show that the information contained in these data provide an unprecedented insight into the sub-picosecond π-bond reconstitution process which is at the basis of the reactivity of the protein embedded 11-cis and all-trans retinal chromophores. More specifically, the data point to the phase and amplitude of the skeletal bond length alternation stretching mode as the key factor switching the chromophore to a bonding state. It is also confirmed/found that the phase and amplitude of the hydrogen-out-of-plane mode controls the stereochemical outcome of the forward and reverse photoisomerizations.


Journal of Organic Chemistry | 1999

Organic Thermochemistry at High ab Initio Levels. 1. A G2(MP2) and G2 Study of Cyclic Saturated and Unsaturated Hydrocarbons (Including Aromatics)

Rafael Notario; Obis Castaño; Roberto Gomperts; Luis Manuel Frutos; Raúl Palmeiro

With the purpose of exploring the reliability of the enthalpies of formation calculated using G2 methods, we have examined a series of saturated and unsaturated alicyclic hydrocarbons varying the size and the number of formal double bonds in the molecule. Heats of formation have been calculated at the G2(MP2) and G2 levels through both atomization reactions and bond separation isodesmic reactions, and comparison with experimental values has been made. A linear relationship between the differences between experimental and calculated (from atomization reactions) heats of formation and the number of formal double bonds is obtained.


Journal of Chemical Theory and Computation | 2014

Shape of Multireference, Equation-of-Motion Coupled-Cluster, and Density Functional Theory Potential Energy Surfaces at a Conical Intersection.

Samer Gozem; Federico Melaccio; Alessio Valentini; Michael Filatov; Miquel Huix-Rotllant; Nicolas Ferré; Luis Manuel Frutos; Celestino Angeli; Anna I. Krylov; Alexander A. Granovsky; Roland Lindh; Massimo Olivucci

We report and characterize ground-state and excited-state potential energy profiles using a variety of electronic structure methods along a loop lying on the branching plane associated with a conical intersection (CI) of a reduced retinal model, the penta-2,4-dieniminium cation (PSB3). Whereas the performance of the equation-of-motion coupled-cluster, density functional theory, and multireference methods had been tested along the excited- and ground-state paths of PSB3 in our earlier work, the ability of these methods to correctly describe the potential energy surface shape along a CI branching plane has not yet been investigated. This is the focus of the present contribution. We find, in agreement with earlier studies by others, that standard time-dependent DFT (TDDFT) does not yield the correct two-dimensional (i.e., conical) crossing along the branching plane but rather a one-dimensional (i.e., linear) crossing along the same plane. The same type of behavior is found for SS-CASPT2(IPEA=0), SS-CASPT2(IPEA=0.25), spin-projected SF-TDDFT, EOM-SF-CCSD, and, finally, for the reference MRCISD+Q method. In contrast, we found that MRCISD, CASSCF, MS-CASPT2(IPEA=0), MS-CASPT2(IPEA=0.25), XMCQDPT2, QD-NEVPT2, non-spin-projected SF-TDDFT, and SI-SA-REKS yield the expected conical crossing. To assess the effect of the different crossing topologies (i.e., linear or conical) on the PSB3 photoisomerization efficiency, we discuss the results of 100 semiclassical trajectories computed by CASSCF and SS-CASPT2(IPEA=0.25) for a PSB3 derivative. We show that for the same initial conditions, the two methods yield similar dynamics leading to isomerization quantum yields that differ by only a few percent.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Photochemistry of hydrogen-bonded aromatic pairs: Quantum dynamical calculations for the pyrrole–pyridine complex

Zhenggang Lan; Luis Manuel Frutos; Andrzej L. Sobolewski; Wolfgang Domcke

The photochemical dynamics of the pyrrole–pyridine hydrogen-bonded complex has been investigated with computational methods. In this system, a highly polar charge-transfer state of 1ππ* character drives the proton transfer from pyrrole to pyridine, leading to a conical intersection of S1 and S0 energy surfaces. A two-sheeted potential-energy surface including 39 in-plane nuclear degrees of freedom has been constructed on the basis of ab initio multiconfiguration electronic-structure data. The non-Born–Oppenheimer nuclear dynamics has been treated with time-dependent quantum wave-packet methods, including the two or three most relevant nuclear degrees of freedom. The effect of the numerous weakly coupled vibrational modes has been taken into account with reduced-density-matrix methods (multilevel Redfield theory). The results provide insight into the mechanisms of excited-state deactivation of hydrogen-bonded aromatic systems via the electron-driven proton-transfer process. This process is believed to be of relevance for the ultrafast excited-state deactivation of DNA base pairs and may contribute to the photostability of the molecular encoding of the genetic information.


Journal of the American Chemical Society | 2008

Relationship Between The Excited State Relaxation Paths Of Rhodopsin And Isorhodopsin

Angela Strambi; Pedro B. Coto; Luis Manuel Frutos; Nicolas Ferré; Massimo Olivucci

The pigment Isorhodopsin, an analogue of the visual pigment Rhodopsin, is investigated via quantum-mechanics/molecular-mechanics computations based on an ab initio multiconfigurational quantum chemical treatment. The limited <5 kcal mol(-1) error found for the spectral parameters allows for a nearly quantitative analysis of the excited-state structure and reactivity of its 9-cis-retinal chromophore. We demonstrate that, similar to Rhodopsin, Isorhodopsin features a shallow photoisomerization path. However, the structure of the reaction coordinate appears to be reversed. In fact, while the coordinate still corresponds to an asynchronous crankshaft motion, the dominant isomerization component involves a counterclockwise, rather than clockwise, twisting of the 9-cis bond. Similarly, the minor component involves a clockwise, rather than counterclockwise, twisting of the 11-trans bond. Ultimately, these results indicate that Rhodopsin and Isorhodopsin relax along a common excited-state potential energy valley starting from opposite ends. The fact that the central and lowest energy region of such valley runs along a segment of the intersection space between the ground and excited states of the protein explains why the pigments decay at distinctive conical intersection structures.


RSC Advances | 2013

E/Z Photochemical switches: syntheses, properties and applications

Cristina García-Iriepa; Marco Marazzi; Luis Manuel Frutos; Diego Sampedro

Molecular switches based on E/Z photoisomerization have been used in different contexts in order to control a variety of processes in different systems, from peptide conformation control to molecular data storage devices, from catalysis to smart materials. The syntheses, properties and applications of several types of E/Z photochemical switches are presented with special attention paid to azobenzenes, overcrowded alkenes and switches based on the protonated Schiff base chromophore of rhodopsins.


Journal of the American Chemical Society | 2010

Modeling, Preparation, and Characterization of a Dipole Moment Switch Driven by Z/E Photoisomerization

Alfonso Melloni; Riccardo Rossi Paccani; Donato Donati; Vinicio Zanirato; Adalgisa Sinicropi; Maria Laura Parisi; Elena Martin; Mikhail N. Ryazantsev; Wan Jian Ding; Luis Manuel Frutos; Riccardo Basosi; Stefania Fusi; Loredana Latterini; Nicolas Ferré; Massimo Olivucci

We report the results of a multidisciplinary research effort where the methods of computational photochemistry and retrosynthetic analysis/synthesis have contributed to the preparation of a novel N-alkylated indanylidene-pyrroline Schiff base featuring an exocyclic double bond and a permanent zwitterionic head. We show that, due to its large dipole moment and efficient photoisomerization, such a system may constitute the prototype of a novel generation of electrostatic switches achieving a reversible light-induced dipole moment change on the order of 30 D. The modeling of a peptide fragment incorporating the zwitterionic head into a conformationally rigid side chain shows that the switch can effectively modulate the fluorescence of a tryptophan probe.


Journal of Physical Chemistry Letters | 2013

Chiral Hydrogen Bond Environment Providing Unidirectional Rotation in Photoactive Molecular Motors

Cristina García-Iriepa; Marco Marazzi; Felipe Zapata; Alessio Valentini; Diego Sampedro; Luis Manuel Frutos

Generation of a chiral hydrogen bond environment in efficient molecular photoswitches is proposed as a novel strategy for the design of photoactive molecular motors. Here, the following strategy is used to design a retinal-based motor presenting singular properties: (i) a single excitation wavelength is needed to complete the unidirectional rotation process (360°); (ii) the absence of any thermal step permits the process to take place at low temperatures; and (iii) the ultrafast process permits high rotational frequencies.

Collaboration


Dive into the Luis Manuel Frutos's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marco Marazzi

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicolas Ferré

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge