Luís Maurício T.R. Lima
Federal University of Rio de Janeiro
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Luís Maurício T.R. Lima.
Trends in Biochemical Sciences | 2008
Jerson L. Silva; Luís Maurício T.R. Lima; Debora Foguel; Yraima Cordeiro
In transmissible spongiform encephalopathies, the infectious material consists chiefly of a protein, the scrapie prion protein PrP(Sc), that carries no genetic coding material; however, prions are likely to have accomplices that chaperone their activity and promote the conversion of the cellular prion protein PrP(C) into the disease-causing isoform (PrP(Sc)). Recent studies from several laboratories indicate that PrP(C) recognizes many nucleic acids (NAs) with high affinities, and we correlate these findings with a possible pathophysiological role for this interaction. Thus, of the chaperones, NA is the most likely candidate for prions. The participation of NAs in prion propagation opens new avenues for developing new diagnostic tools and therapeutics to target prion diseases, as well as for understanding the function of PrP(C), probably as a NA chaperone.
Accounts of Chemical Research | 2010
Jerson L. Silva; Tuane C. R. G. Vieira; Mariana P. B. Gomes; Ana Paula D. Ano Bom; Luís Maurício T.R. Lima; Mônica S. Freitas; Daniella Ishimaru; Yraima Cordeiro; Debora Foguel
Protein misfolding has been implicated in a large number of diseases termed protein- folding disorders (PFDs), which include Alzheimer’s disease, Parkinson’s disease, transmissible spongiform encephalopathies, familial amyloid polyneuropathy, Huntington’s disease, and type II diabetes. In these diseases, large quantities of incorrectly folded proteins undergo aggregation, destroying brain cells and other tissues. The interplay between ligand binding and hydration is an important component of the formation of misfolded protein species. Hydration drives various biological processes, including protein folding, ligand binding, macromolecular assembly, enzyme kinetics, and signal transduction. The changes in hydration and packing, both when proteins fold correctly or when folding goes wrong, leading to PFDs, are examined through several biochemical, biophysical, and structural approaches. Although in many cases the binding of a ligand such as a nucleic acid helps to prevent misfolding and aggregation, there are several examples in which ligands induce misfolding and assembly into amyloids. This occurs simply because the formation of structured aggregates (such as protofibrillar and fibrillar amyloids) involves decreases in hydration, formation of a hydrogen-bond network in the secondary structure, and burying of nonpolar amino acid residues, processes that also occur in the normal folding landscape. In this Account, we describe the present knowledge of the folding and misfolding of different proteins, with a detailed emphasis on mammalian prion protein (PrP) and tumoral suppressor protein p53; we also explore how ligand binding and hydration together influence the fate of the proteins. Anfinsen’s paradigm that the structure of a protein is determined by its amino acid sequence is to some extent contradicted by the observation that there are two isoforms of the prion protein with the same sequence: the cellular and the misfolded isoform. The cellular isoform of PrP has a disordered N-terminal domain and a highly flexible, not-well-packed C-terminal domain, which might account for its significant hydration. When PrP binds to biological molecules, such as glycosaminoglycans and nucleic acids, the disordered segments appear to fold and become less hydrated. Formation of the PrP−nucleic acid complex seems to accelerate the conversion of the cellular form of the protein into the disease-causing isoform. For p53, binding to some ligands, including nucleic acids, would prevent misfolding of the protein. Recently, several groups have begun to analyze the folding−misfolding of the individual domains of p53, but several questions remain unanswered. We discuss the implications of these findings for understanding the productive and incorrect folding pathways of these proteins in normal physiological states and in human disease, such as prion disorders and cancer. These studies are shown to lay the groundwork for the development of new drugs.
Journal of Biological Chemistry | 2004
Yraima Cordeiro; Luís Maurício T.R. Lima; Mariana P. B. Gomes; Debora Foguel; Jerson L. Silva
The prion protein (PrP) is the major agent implicated in the diseases known as transmissible spongiform encephalopathies. The onset of transmissible spongiform encephalopathy is related to a change in conformation of the PrPC, which loses most of its α-helical content, becoming a β-sheet-rich protein, known as PrPSc. Here we have used two Syrian hamster prion domains (PrP 109–141 and PrP 109–149) and the murine recombinant PrP (rPrP 23–231) to investigate the effects of anilino-naphtalene compounds on prion oligomerization and aggregation. Aggregation in the presence of bis-ANS (4,4′-dianilino-1,1′-binaphthyl-5,5′-sulfonate), ANS (1-anilinonaphthalene-8-sulfonate), and AmNS (1-amino-5-naphtalenesulfonate) was monitored. Bis-ANS was the most effective inhibitor of prion peptide aggregation. Bis-ANS binds strongly to rPrP 23–231 leading to a substantial increase in β-sheet content and to limited oligomerization. More strikingly, the binding of bis-ANS to full-length rPrP is diminished by the addition of nanomolar concentrations of oligonucleotides, demonstrating that they compete for the same binding site. Thus, bis-ANS displays properties similar to those of nucleic acids, causing oligomerization and conversion to β-sheet (Cordeiro, Y., Machado, F., Juliano, L., Juliano, M. A., Brentani, R. R., Foguel, D., and Silva, J. L. (2001) J. Biol. Chem. 276, 49400–49409). This dual effect of bis-ANS on prion protein makes this compound highly important to sequester crucial conformations of the protein, which may be useful to the understanding of the disease and to serve as a lead for the development of new therapeutic strategies.
Biochemistry | 2009
Daniella Ishimaru; Ana Paula D. Ano Bom; Luís Maurício T.R. Lima; Pablo A. Quesado; Marcos F. C. Oyama; Claudia Vitória de Moura Gallo; Yraima Cordeiro; Jerson L. Silva
The tumor suppressor protein p53 is a nuclear protein that serves as an important transcription factor. The region responsible for sequence-specific DNA interaction is located in its core domain (p53C). Although full-length p53 binds to DNA as a tetramer, p53C binds as a monomer since it lacks the oligomerization domain. It has been previously demonstrated that two core domains have a dimerization interface and undergo conformational change when bound to DNA. Here we demonstrate that the interaction with a consensus DNA sequence provides the core domain of p53 with enhanced conformational stability at physiological salt concentrations (0.15 M). This stability could be either increased or abolished at low (0.01 M) or high (0.3 M) salt concentrations, respectively. In addition, interaction with the cognate sequence prevents aggregation of p53C into an amyloid-like structure, whereas binding to a nonconsensus DNA sequence has no effect on p53C stability, even at low ionic strength. Strikingly, sequence-specific DNA binding also resulted in a large stabilization of full-length p53, whereas nonspecific sequence binding led to no stabilization. The effects of cognate DNA could be mimicked by high concentrations of osmolytes such as glycerol, which implies that the stabilization is caused by the exclusion of water. Taken together, our results show an enhancement in protein stability driven by specific DNA recognition. When cognate DNA was added to misfolded protein obtained after a pressurization cycle, the original conformation was mostly recovered. Our results may aid the development of therapeutic approaches to prevent misfolded species of p53.
Cellular and Molecular Life Sciences | 2012
Rafael Linden; Yraima Cordeiro; Luís Maurício T.R. Lima
Transmissible spongiform encephalopathies (TSEs) are neurodegenerative diseases associated with progressive oligo- and multimerization of the prion protein (PrPC), its conformational conversion, aggregation and precipitation. We recently proposed that PrPC serves as a cell surface scaffold protein for a variety of signaling modules, the effects of which translate into wide-range functional consequences. Here we review evidence for allosteric functions of PrPC, which constitute a common property of scaffold proteins. The available data suggest that allosteric effects among PrPC and its partners are involved in the assembly of multi-component signaling modules at the cell surface, impose upon both physiological and pathological conformational responses of PrPC, and that allosteric dysfunction of PrPC has the potential to entail progressive signal corruption. These properties may be germane both to physiological roles of PrPC, as well as to the pathogenesis of the TSEs and other degenerative/non-communicable diseases.
Journal of Structural Biology | 2010
Daniela B.B. Trivella; Lucas Bleicher; Leonardo C. Palmieri; Helton J. Wiggers; Carlos A. Montanari; Jeffery W. Kelly; Luís Maurício T.R. Lima; Debora Foguel; Igor Polikarpov
Transthyretin (TTR) is a tetrameric beta-sheet-rich transporter protein directly involved in human amyloid diseases. It was recently found that the isoflavone genistein (GEN) potently inhibits TTR amyloid fibril formation (Green et al., 2005) and is therefore a promising candidate for TTR amyloidosis treatment. Here we used structural and biophysical approaches to characterize genistein binding to the wild type (TTRwt) and to its most frequent amyloidogenic variant, the V30M mutant. In a dose-dependent manner, genistein elicited considerable increases in both mutant and TTRwt stability as demonstrated by high hydrostatic pressure (HHP) and acid-mediated dissociation/denaturation assays. TTR:GEN crystal complexes and isothermal titration calorimetry (ITC) experiments showed that the binding mechanisms of genistein to the TTRwt and to V30M are different and are dependent on apoTTR structure conformations. Furthermore, we could also identify potential allosteric movements caused by genistein binding to the wild type TTR that explains, at least in part, the frequently observed negatively cooperative process between the two sites of TTRwt when binding ligands. These findings show that TTR mutants may present different ligand recognition and therefore are of value in ligand design for inhibiting TTR amyloidosis.
Journal of Biological Chemistry | 1997
Luís Maurício T.R. Lima; Gonzalo de Prat-Gay
We are investigating the folding of the 81-residue recombinant dimeric DNA binding domain of the E2 protein from human papillomavirus and how it is coupled to the binding of its DNA ligand. Modifications in buffer composition, such as ionic strength and phosphate, cause an ∼5.0 kcal mol−1stabilization of the domain to urea unfolding, based on very similar conformational changes as measured by far UV circular dichroism. Binding of DNA produces an even greater stabilization, magnitude similar to that caused by the nonspecific polymer ligand heparin, which shifts the urea midpoint 2.5-fold. The DNA-bound complex displays substantial changes similar to those caused by ionic strength and phosphate in terms of overall secondary structure. Bis-8-anilino-1-naphthalenesulfonate provides a very sensitive conformational probe, which shows alterations in the domain caused by the above mentioned compounds. In general terms, binding of DNA involves an overall conformational readjustment in the protein but maintains the β-barrel scaffold intact. This conformational plasticity seems to be of importance in the regulatory functions of this type of DNA-binding protein. The extremely long half-life of the E2-DNA complex, together with its very high stability, suggests that, in the absence of other factors that may affect its stability in vivo, the possibility of dissociation once formed is restricted.
Journal of Structural Biology | 2012
Daniela B.B. Trivella; Caio V. dos Reis; Luís Maurício T.R. Lima; Debora Foguel; Igor Polikarpov
Transthyretin (TTR) is a carrier protein involved in human amyloidosis. The development of small molecules that may act as TTR amyloid inhibitors is a promising strategy to treat these pathologies. Here we selected and characterized the interaction of flavonoids with the wild type and the V30M amyloidogenic mutant TTR. TTR acid aggregation was evaluated in vitro in the presence of the different flavonoids. The best TTR aggregation inhibitors were studied by Isothermal Titration Calorimetry (ITC) in order to reveal their thermodynamic signature of binding to TTRwt. Crystal structures of TTRwt in complex with the top binders were also obtained, enabling us to in depth inspect TTR interactions with these flavonoids. The results indicate that changing the number and position of hydroxyl groups attached to the flavonoid core strongly influence flavonoid recognition by TTR, either by changing ligand affinity or its mechanism of interaction with the two sites of TTR. We also compared the results obtained for TTRwt with the V30M mutant structure in the apo form, allowing us to pinpoint structural features that may facilitate or hamper ligand binding to the V30M mutant. Our data show that the TTRwt binding site is labile and, in particular, the central region of the cavity is sensible for the small differences in the ligands tested and can be influenced by the Met30 amyloidogenic mutation, therefore playing important roles in flavonoid binding affinity, mechanism and mutant protein ligand binding specificities.
Journal of Biological Chemistry | 2010
Leonardo C. Palmieri; Luís Maurício T.R. Lima; Juliana Freire; Lucas Bleicher; Igor Polikarpov; Fabio C. L. Almeida; Debora Foguel
Human transthyretin (TTR) is a homotetrameric protein involved in several amyloidoses. Zn2+ enhances TTR aggregation in vitro, and is a component of ex vivo TTR amyloid fibrils. We report the first crystal structure of human TTR in complex with Zn2+ at pH 4.6–7.5. All four structures reveal three tetra-coordinated Zn2+-binding sites (ZBS 1–3) per monomer, plus a fourth site (ZBS 4) involving amino acid residues from a symmetry-related tetramer that is not visible in solution by NMR. Zn2+ binding perturbs loop E-α-helix-loop F, the region involved in holo-retinol-binding protein (holo-RBP) recognition, mainly at acidic pH; TTR affinity for holo-RBP decreases ∼5-fold in the presence of Zn2+. Interestingly, this same region is disrupted in the crystal structure of the amyloidogenic intermediate of TTR formed at acidic pH in the absence of Zn2+. HNCO and HNCA experiments performed in solution at pH 7.5 revealed that upon Zn2+ binding, although the α-helix persists, there are perturbations in the resonances of the residues that flank this region, suggesting an increase in structural flexibility. While stability of the monomer of TTR decreases in the presence of Zn2+, which is consistent with the tertiary structural perturbation provoked by Zn2+ binding, tetramer stability is only marginally affected by Zn2+. These data highlight structural and functional roles of Zn2+ in TTR-related amyloidoses, as well as in holo-RBP recognition and vitamin A homeostasis.
Colloids and Surfaces B: Biointerfaces | 2012
Luiz Henrique Guerreiro; Daniel Da Silva; Eduardo Ricci-Júnior; Wendell Girard-Dias; Camile Moreira Mascarenhas; Mauro Sola-Penna; Kildare Miranda; Luís Maurício T.R. Lima
Since its discovery the therapeutic use of the pancreatic hormone amylin has been limited due to its poor water solubility and propensity for amyloid aggregation. We have entrapped the human amylin protein in polymeric nanoparticles, using a single emulsion-solvent evaporation method and investigated its effectiveness in the controlled release of the peptide. Typical preparations composed of poly-ε-caprolactone had a mean particle size of approximately 200 nm, low polydispersity index, high protein entrapment efficiency (80%) and process yield (90%), and spherical and smooth surfaces. These nanoparticles presented a controlled release in vitro for approximately 240 h. Pharmacological evaluation in vivo by subcutaneous administration in fasting mice demonstrated the bioactivity and effectiveness of the released human amylin, resulting in reduced glycemia lasting for at least 36 h. These features indicate the potential for the use of a confined particulate system in the therapeutic controlled and sustained release of human amylin.