Luis P. Íñiguez
National Autonomous University of Mexico
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Luis P. Íñiguez.
BMC Genomics | 2012
Pablo Peláez; Minerva S Trejo; Luis P. Íñiguez; Georgina Estrada-Navarrete; Alejandra A. Covarrubias; José Luis Reyes; Federico Sánchez
BackgroundMicroRNAs (miRNAs) are endogenously encoded small RNAs that post-transcriptionally regulate gene expression. MiRNAs play essential roles in almost all plant biological processes. Currently, few miRNAs have been identified in the model food legume Phaseolus vulgaris (common bean). Recent advances in next generation sequencing technologies have allowed the identification of conserved and novel miRNAs in many plant species. Here, we used Illuminas sequencing by synthesis (SBS) technology to identify and characterize the miRNA population of Phaseolus vulgaris.ResultsSmall RNA libraries were generated from roots, flowers, leaves, and seedlings of P. vulgaris. Based on similarity to previously reported plant miRNAs,114 miRNAs belonging to 33 conserved miRNA families were identified. Stem-loop precursors and target gene sequences for several conserved common bean miRNAs were determined from publicly available databases. Less conserved miRNA families and species-specific common bean miRNA isoforms were also characterized. Moreover, novel miRNAs based on the small RNAs were found and their potential precursors were predicted. In addition, new target candidates for novel and conserved miRNAs were proposed. Finally, we studied organ-specific miRNA family expression levels through miRNA read frequencies.ConclusionsThis work represents the first massive-scale RNA sequencing study performed in Phaseolus vulgaris to identify and characterize its miRNA population. It significantly increases the number of miRNAs, precursors, and targets identified in this agronomically important species. The miRNA expression analysis provides a foundation for understanding common bean miRNA organ-specific expression patterns. The present study offers an expanded picture of P. vulgaris miRNAs in relation to those of other legumes.
BMC Genomics | 2014
Jamie A. O’Rourke; Luis P. Íñiguez; Fengli Fu; Bruna Bucciarelli; Susan S. Miller; Scott A. Jackson; Philip E. McClean; Jun Li; Xinbin Dai; Patrick Xuechun Zhao; Georgina Hernández; Carroll P. Vance
BackgroundCommon bean (Phaseolus vulgaris) is grown throughout the world and comprises roughly 50% of the grain legumes consumed worldwide. Despite this, genetic resources for common beans have been lacking. Next generation sequencing, has facilitated our investigation of the gene expression profiles associated with biologically important traits in common bean. An increased understanding of gene expression in common bean will improve our understanding of gene expression patterns in other legume species.ResultsCombining recently developed genomic resources for Phaseolus vulgaris, including predicted gene calls, with RNA-Seq technology, we measured the gene expression patterns from 24 samples collected from seven tissues at developmentally important stages and from three nitrogen treatments. Gene expression patterns throughout the plant were analyzed to better understand changes due to nodulation, seed development, and nitrogen utilization. We have identified 11,010 genes differentially expressed with a fold change ≥ 2 and a P-value < 0.05 between different tissues at the same time point, 15,752 genes differentially expressed within a tissue due to changes in development, and 2,315 genes expressed only in a single tissue. These analyses identified 2,970 genes with expression patterns that appear to be directly dependent on the source of available nitrogen. Finally, we have assembled this data in a publicly available database, The Phaseolus vulgaris Gene Expression Atlas (Pv GEA), http://plantgrn.noble.org/PvGEA/ . Using the website, researchers can query gene expression profiles of their gene of interest, search for genes expressed in different tissues, or download the dataset in a tabular form.ConclusionsThese data provide the basis for a gene expression atlas, which will facilitate functional genomic studies in common bean. Analysis of this dataset has identified genes important in regulating seed composition and has increased our understanding of nodulation and impact of the nitrogen source on assimilation and distribution throughout the plant.
Plant Physiology | 2015
Bárbara Nova-Franco; Luis P. Íñiguez; Oswaldo Valdés-López; Xochitl Alvarado-Affantranger; Alfonso Leija; Sara Isabel Fuentes; Mario Ramírez; Sujay Paul; José Luis Reyes; Lourdes Girard; Georgina Hernández
A common bean microRNA, that targets a trancription factor, positively controls root development and symbiotic rhizobia infection and nodulation. Micro-RNAs are recognized as important posttranscriptional regulators in plants. The relevance of micro-RNAs as regulators of the legume-rhizobia nitrogen-fixing symbiosis is emerging. The objective of this work was to functionally characterize the role of micro-RNA172 (miR172) and its conserved target APETALA2 (AP2) transcription factor in the common bean (Phaseolus vulgaris)-Rhizobium etli symbiosis. Our expression analysis revealed that mature miR172c increased upon rhizobial infection and continued increasing during nodule development, reaching its maximum in mature nodules and decaying in senescent nodules. The expression of AP2-1 target showed a negative correlation with miR172c expression. A drastic decrease in miR172c and high AP2-1 mRNA levels were observed in ineffective nodules. Phenotypic analysis of composite bean plants with transgenic roots overexpressing miR172c or a mutated AP2-1 insensitive to miR172c cleavage demonstrated the pivotal regulatory role of the miR172 node in the common bean-rhizobia symbiosis. Increased miR172 resulted in improved root growth, increased rhizobial infection, increased expression of early nodulation and autoregulation of nodulation genes, and improved nodulation and nitrogen fixation. In addition, these plants showed decreased sensitivity to nitrate inhibition of nodulation. Through transcriptome analysis, we identified 114 common bean genes that coexpressed with AP2-1 and proposed these as being targets for transcriptional activation by AP2-1. Several of these genes are related to nodule senescence, and we propose that they have to be silenced, through miR172c-induced AP2-1 cleavage, in active mature nodules. Our work sets the basis for exploring the miR172-mediated improvement of symbiotic nitrogen fixation in common bean, the most important grain legume for human consumption.
BMC Genomics | 2015
Damien Formey; Luis P. Íñiguez; Pablo Peláez; Yong-Fang Li; Ramanjulu Sunkar; Federico Sánchez; José Luis Reyes; Georgina Hernández
BackgroundMiRNAs and phasiRNAs are negative regulators of gene expression. These small RNAs have been extensively studied in plant model species but only 10 mature microRNAs are present in miRBase version 21, the most used miRNA database, and no phasiRNAs have been identified for the model legume Phaseolus vulgaris. Thanks to the recent availability of the first version of the common bean genome, degradome data and small RNA libraries, we are able to present here a catalog of the microRNAs and phasiRNAs for this organism and, particularly, we suggest new protagonists in the symbiotic nodulation events.ResultsWe identified a set of 185 mature miRNAs, including 121 previously unpublished sequences, encoded by 307 precursors and distributed in 98 families. Degradome data allowed us to identify a total of 181 targets for these miRNAs. We reveal two regulatory networks involving conserved miRNAs: those known to play crucial roles in the establishment of nodules, and novel miRNAs present only in common bean, suggesting a specific role for these sequences. In addition, we identified 125 loci that potentially produce phased small RNAs, with 47 of them having all the characteristics of being triggered by a total of 31 miRNAs, including 14 new miRNAs identified in this study.ConclusionsWe provide here a set of new small RNAs that contribute to the broader knowledge of the sRNAome of Phaseolus vulgaris. Thanks to the identification of the miRNA targets from degradome analysis and the construction of regulatory networks between the mature microRNAs, we present here the probable functional regulation associated with the sRNAome and, particularly, in N2-fixing symbiotic nodules.
Frontiers in Plant Science | 2013
Jamie A. O'Rourke; Luis P. Íñiguez; Bruna Bucciarelli; Jeffrey Roessler; Jeremy Schmutz; Phillip E. McClean; Scott A. Jackson; Georgina Hernández; Michelle A. Graham; Robert M. Stupar; Carroll P. Vance
A small fast neutron (FN) mutant population has been established from Phaseolus vulgaris cv. Red Hawk. We leveraged the available P. vulgaris genome sequence and high throughput next generation DNA sequencing to examine the genomic structure of five P. vulgaris cv. Red Hawk FN mutants with striking visual phenotypes. Analysis of these genomes identified three classes of structural variation (SV); between cultivar variation, natural variation within the FN mutant population, and FN induced mutagenesis. Our analyses focused on the latter two classes. We identified 23 large deletions (>40 bp) common to multiple individuals, illustrating residual heterogeneity and regions of SV within the common bean cv. Red Hawk. An additional 18 large deletions were identified in individual mutant plants. These deletions, ranging in size from 40 bp to 43,000 bp, are potentially the result of FN mutagenesis. Six of the 18 deletions lie near or within gene coding regions, identifying potential candidate genes causing the mutant phenotype.
Frontiers in Genetics | 2017
Luis P. Íñiguez; Georgina Hernández
The protein diversity that exists today has resulted from various evolutionary processes. It is well known that gene duplication (GD) along with the accumulation of mutations are responsible, among other factors, for an increase in the number of different proteins. The gene structure in eukaryotes requires the removal of non-coding sequences, introns, to produce mature mRNAs. This process, known as cis-splicing, referred to here as splicing, is regulated by several factors which can lead to numerous splicing arrangements, commonly designated as alternative splicing (AS). AS, producing several transcripts isoforms form a single gene, also increases the protein diversity. However, the evolution and manner for increasing protein variation differs between AS and GD. An important question is how are patterns of AS affected after a GD event. Here, we review the current knowledge of AS and GD, focusing on their evolutionary relationship. These two processes are now considered the main contributors to the increasing protein diversity and therefore their relationship is a relevant, yet understudied, area of evolutionary study.
BMC Genomics | 2017
Luis P. Íñiguez; Mario Ramírez; William B. Barbazuk; Georgina Hernández
BackgroundThe vast diversification of proteins in eukaryotic cells has been related with multiple transcript isoforms from a single gene that result in alternative splicing (AS) of primary transcripts. Analysis of RNA sequencing data from expressed sequence tags and next generation RNA sequencing has been crucial for AS identification and genome-wide AS studies. For the identification of AS events from the related legume species Phaseolus vulgaris and Glycine max, 157 and 88 publicly available RNA-seq libraries, respectively, were analyzed.ResultsWe identified 85,570 AS events from P. vulgaris in 72% of expressed genes and 134,316 AS events in 70% of expressed genes from G. max. These were categorized in seven AS event types with intron retention being the most abundant followed by alternative acceptor and alternative donor, representing ~75% of all AS events in both plants. Conservation of AS events in homologous genes between the two species was analyzed where an overrepresentation of AS affecting 5’UTR regions was observed for certain types of AS events. The conservation of AS events was experimentally validated for 8 selected genes, through RT-PCR analysis. The different types of AS events also varied by relative position in the genes. The results were consistent in both species.ConclusionsThe identification and analysis of AS events are first steps to understand their biological relevance. The results presented here from two related legume species reveal high conservation, over ~15–20 MY of divergence, and may point to the biological relevance of AS.
Plant Biotechnology Reports | 2016
Mario Ramírez; Luis P. Íñiguez; Gabriela Guerrero; Francesca Sparvoli; Georgina Hernández
The common bean (Phaseolus vulgaris L.)–Rhizobium etli symbiosis and crop productivity are highly affected by adverse environmental conditions that cause oxidative stress. Based on the improved symbiosis of common bean inoculated with engineered R. etli expressing the Vitreoscilla hemoglobin (VHb) (Ramírez et al., Mol Plant Microbe Interact 12:1008–1015, 1999), in this work we analyzed the effect of this strain in plants exposed to the herbicide paraquat (PQ) which generates oxidative stress. PQ-treated plants inoculated with the engineered (VHb) R. etli strain showed higher nitrogenase activity and ureide content than plants inoculated with the wild type strain. We performed microarray transcriptomic analysis to identify PQ-responsive genes in nodules elicited by engineered vs wild type strains. An evident reprogramming of the transcriptional profile was observed in PQ-treated nodules, and the global changes in gene expression were different between nodules elicited with each strain. The most relevant difference was the increased number of up-regulated PQ-responsive genes in wild type strain nodules as compared to VHb-expressing nodules. The majority of these genes were classified into biological processes/functional categories related to defense, response to abiotic stress or signaling, as revealed by Gene Ontology and MapMan analysis. Taken together our analysis suggests that the expression of VHb in R. etli bacteroids contributes to buffering the damage caused by increased reactive oxygen species, and this is reflected in nodule cells that showed decreased sensitivity to oxidative stress and response of stress-related genes. Biotechnological applications of VHb-expressing rhizobia inoculants could be further explored.
Plant Signaling & Behavior | 2015
Luis P. Íñiguez; Bárbara Nova-Franco; Georgina Hernández
The intricate regulatory network for floral organogenesis in plants that includes AP2/ERF, SPL and AGL transcription factors, miR172 and miR156 along with other components is well documented, though its complexity and size keep increasing. The miR172/AP2 node was recently proposed as essential regulator in the legume-rhizobia nitrogen-fixing symbiosis. Research from our group contributed to demonstrate the control of common bean (Phaseolus vulgaris) nodulation by miR172c/AP2-1, however no other components of such regulatory network have been reported. Here we propose AGLs as new protagonists in the regulation of common bean nodulation and discuss the relevance of future deeper analysis of the complex AP2 regulatory network for nodule organogenesis in legumes.
BMC Plant Biology | 2013
Rosaura Aparicio-Fabre; Gabriel Guillén; Montserrat Loredo; Jesús Arellano; Oswaldo Valdés-López; Mario Ramírez; Luis P. Íñiguez; Dario Panzeri; Bianca Castiglioni; Paola Cremonesi; Francesco Strozzi; Alessandra Stella; Lourdes Girard; Francesca Sparvoli; Georgina Hernández