Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luis R. Martinez is active.

Publication


Featured researches published by Luis R. Martinez.


Journal of Investigative Dermatology | 2009

Antimicrobial and Healing Efficacy of Sustained Release Nitric Oxide Nanoparticles Against Staphylococcus Aureus Skin Infection

Luis R. Martinez; George Han; Manju Chacko; Mircea Radu Mihu; Marc Jacobson; Phil Gialanella; Adam J. Friedman; Joshua D. Nosanchuk; Joel M. Friedman

Staphylococcus aureus (SA) is a leading cause of both superficial and invasive infections in community and hospital settings, frequently resulting in chronic refractory disease. It is imperative that innovative therapeutics to which the bacteria are unlikely to evolve resistance be developed to curtail associated morbidity and mortality and ultimately improve our capacity to treat these infections. In this study, a previously unreported nitric oxide (NO)-releasing nanoparticle technology is applied to the treatment of methicillin-resistant SA (MRSA) wound infections. The results show that the nanoparticles exert antimicrobial activity against MRSA in a murine wound model. Acceleration of infected wound closure in NO-treated groups was clinically shown compared with controls. The histology of wounds revealed that NO nanoparticle treatment decreased suppurative inflammation, minimal bacterial burden, and less collagen degradation, providing potential mechanisms for biological activity. Together, these data suggest that these NO-releasing nanoparticles have the potential to serve as a novel class of topically applied antimicrobials for the treatment of cutaneous infections and wounds.


Journal of Clinical Investigation | 2011

Mycobacteria release active membrane vesicles that modulate immune responses in a TLR2-dependent manner in mice

Rafael Prados-Rosales; Andres Baena; Luis R. Martinez; Jose L. Luque-Garcia; Rainer Kalscheuer; Usha Veeraraghavan; Carmen Cámara; Joshua D. Nosanchuk; Gurdyal S. Besra; Bing Chen; Juan Jimenez; Aharona Glatman-Freedman; William R. Jacobs; Steven A. Porcelli; Arturo Casadevall

Bacteria naturally release membrane vesicles (MVs) under a variety of growth environments. Their production is associated with virulence due to their capacity to concentrate toxins and immunomodulatory molecules. In this report, we show that the 2 medically important species of mycobacteria, Mycobacterium tuberculosis and Mycobacterium bovis bacille Calmette-Guérin, release MVs when growing in both liquid culture and within murine phagocytic cells in vitro and in vivo. We documented MV production in a variety of virulent and nonvirulent mycobacterial species, indicating that release of MVs is a property conserved among mycobacterial species. Extensive proteomic analysis revealed that only MVs from the virulent strains contained TLR2 lipoprotein agonists. The interaction of MVs with macrophages isolated from mice stimulated the release of cytokines and chemokines in a TLR2-dependent fashion, and infusion of MVs into mouse lungs elicited a florid inflammatory response in WT but not TLR2-deficient mice. When MVs were administered to mice before M. tuberculosis pulmonary infection, an accelerated local inflammatory response with increased bacterial replication was seen in the lungs and spleens. Our results provide strong evidence that actively released mycobacterial vesicles are a delivery mechanism for immunologically active molecules that contribute to mycobacterial virulence. These findings may open up new horizons for understanding the pathogenesis of tuberculosis and developing vaccines.


Antimicrobial Agents and Chemotherapy | 2006

Susceptibility of Cryptococcus neoformans Biofilms to Antifungal Agents In Vitro

Luis R. Martinez; Arturo Casadevall

ABSTRACT Microbial biofilms contribute to virulence and resistance to antibiotics by shielding microbial cells from host defenses and antimicrobial drugs, respectively. Cryptococcus neoformans was demonstrated to form biofilms in polystyrene microtiter plates. The numbers of CFU of disaggregated biofilms, 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium hydroxide reduction, and light and confocal microscopy were used to measure the fungal mass, the metabolic activity, and the appearance of C. neoformans biofilms, respectively. Biofilm development by C. neoformans followed a standard sequence of events: fungal surface attachment, microcolony formation, and matrix production. The susceptibilities of C. neoformans cells of the biofilm and planktonic phenotypes to four antifungal agents were examined. The exposure of C. neoformans cells or preformed cryptococcal biofilms to fluconazole or voriconazole did not result in yeast growth inhibition and did not affect the metabolic activities of the biofilms, respectively. In contrast, both C. neoformans cells and preformed biofilms were susceptible to amphotericin B and caspofungin. However, C. neoformans biofilms were significantly more resistant to amphotericin B and caspofungin than planktonic cells, and their susceptibilities to these drugs were further reduced if cryptococcal cells contained melanin. A spot enzyme-linked immunosorbent assay and light and confocal microscopy were used to investigate how antifungal drugs affected C. neoformans biofilm formation. The mechanism by which amphotericin B and caspofungin interfered with C. neoformans biofilm formation involved capsular polysaccharide release and adherence. Our results suggest that biofilm formation may diminish the efficacies of some antifungal drugs during cryptococcal infection.


Applied and Environmental Microbiology | 2007

Cryptococcus neoformans Biofilm Formation Depends on Surface Support and Carbon Source and Reduces Fungal Cell Susceptibility to Heat, Cold, and UV Light

Luis R. Martinez; Arturo Casadevall

ABSTRACT The fungus Cryptococcus neoformans possesses a polysaccharide capsule and can form biofilms on medical devices. We describe the characteristics of C. neoformans biofilm development using a microtiter plate model, microscopic examinations, and a colorimetric 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino) carbonyl]-2H-tetrazolium-hydroxide (XTT) reduction assay to observe the metabolic activity of cryptococci within a biofilm. A strong correlation between XTT and CFU assays was demonstrated. Chemical analysis of the exopolymeric material revealed sugar composition consisting predominantly of xylose, mannose, and glucose, indicating the presence of other polysaccharides in addition to glucurunoxylomannan. Biofilm formation was affected by surface support differences, conditioning films on the surface, characteristics of the medium, and properties of the microbial cell. A specific antibody to the capsular polysaccharide of this fungus was used to stain the extracellular polysaccharide matrix of the fungal biofilms using light and confocal microscopy. Additionally, the susceptibility of C. neoformans biofilms and planktonic cells to environmental stress was investigated using XTT reduction and CFU assays. Biofilms were less susceptible to heat, cold, and UV light exposition than their planktonic counterparts. Our findings demonstrate that fungal biofilm formation is dependent on support surface characteristics and that growth in the biofilm state makes fungal cells less susceptible to potential environmental stresses.


Infection and Immunity | 2005

Specific antibody can prevent fungal biofilm formation and this effect correlates with protective efficacy.

Luis R. Martinez; Arturo Casadevall

ABSTRACT One of the most troublesome medical problems today is infection of prosthetic devices with organisms that form polysaccharide biofilms. This combined with increasing antimicrobial drug resistance is making many infectious diseases incurable. Cryptococcus neoformans is a human-pathogenic fungus that has a polysaccharide capsule and can form biofilms in prosthetic medical devices. We developed a system to study cryptococcal biofilm formation in vitro and studied the effect of antibody to the C. neoformans capsular polysaccharide on this process. C. neoformans biofilm formation was dependent on the presence of a polysaccharide capsule and correlated with the ability of capsular polysaccharide to bind the polystyrene solid support. Protective antibodies prevented biofilm formation whereas nonprotective antibodies were not effective. The mechanism of antibody action involved interference with capsular polysaccharide release from the fungal cell. In contrast, lactoferrin, an effector molecule of innate immune mechanisms, was unable to prevent fungal biofilm formation despite its efficacy against bacterial biofilms. Our results suggest a new role of adaptive humoral immunity whereby some antibodies can inhibit biofilm formation by encapsulated organisms. Vaccines that elicit antibody responses to capsular antigens and/or passive transfer of antibodies to microbial polysaccharides may be useful in preventing biofilm formation.


The Journal of Infectious Diseases | 2010

Demonstration of Antibiofilm and Antifungal Efficacy of Chitosan against Candidal Biofilms, Using an In Vivo Central Venous Catheter Model

Luis R. Martinez; Mircea Radu Mihu; Moses Tar; Radames J. B. Cordero; George Han; Adam J. Friedman; Joel M. Friedman; Joshua D. Nosanchuk

Candida species are a major cause of catheter infections. Using a central venous catheter Candida albicans biofilm model, we demonstrated that chitosan, a polymer isolated from crustacean exoskeletons, inhibits candidal biofilm formation in vivo. Furthermore, chitosan statistically significantly decreased both the metabolic activity of the biofilms and the cell viability of C. albicans and Candida parapsilosis biofilms in vitro. In addition, confocal and scanning electron microscopic examination demonstrated that chitosan penetrates candidal biofilms and damages fungal cells. Importantly, the concentrations of chitosan that were used to evaluate fungal biofilm susceptibility were not toxic to human endothelial cells. Chitosan should be considered for the prevention or treatment of fungal biofilms on central venous catheters and perhaps other medical devices.


PLOS ONE | 2009

Nitric oxide releasing nanoparticles are therapeutic for Staphylococcus aureus abscesses in a murine model of infection.

George Han; Luis R. Martinez; Mircea Radu Mihu; Adam J. Friedman; Joel M. Friedman; Joshua D. Nosanchuk

Staphylococcus aureus (SA) is a leading cause of a diverse spectrum of bacterial diseases, including abscesses. Nitric oxide (NO) is a critical component of the natural host defense against pathogens such as SA, but its therapeutic applications have been limited by a lack of effective delivery options. We tested the efficacy of a NO-releasing nanoparticle system (NO-np) in methicillin-resistant SA (MRSA) abscesses in mice. The results show that the NO-np exert antimicrobial activity against MRSA in vitro and in abscesses. Topical or intradermal NO-np treatment of abscesses reduces the involved area and bacterial load while improving skin architecture. Notably, we evaluated pro- and anti-inflammatory cytokines that are involved in immunomodulation and wound healing, revealing that NO-np lead to a reduction in angiogenesis preventing bacterial dissemination from abscesses. These data suggest that NO-np may be useful therapeutics for microbial abscesses.


American Journal of Pathology | 2012

Nitric Oxide–Releasing Nanoparticles Accelerate Wound Healing by Promoting Fibroblast Migration and Collagen Deposition

George Han; Long N. Nguyen; Chitralekha Macherla; Yuling Chi; Joel M. Friedman; Joshua D. Nosanchuk; Luis R. Martinez

Wound healing is a complex process that involves coordinated interactions between diverse immunological and biological systems. Long-term wounds remain a challenging clinical problem, affecting approximately 6 million patients per year, with a high economic impact. To exacerbate the problem, these wounds render the individual susceptible to life-threatening microbial infections. Because current therapeutic strategies have proved suboptimal, it is imperative to focus on new therapeutic approaches and the development of technologies for both short- and long-term wound management. In recent years, nitric oxide (NO) has emerged as a critical molecule in wound healing, with NO levels increasing rapidly after skin damage and gradually decreasing as the healing process progresses. In this study, we examined the effects of a novel NO-releasing nanoparticle technology on wound healing in mice. The results show that the NO nanoparticles (NO-np) significantly accelerated wound healing. NO-np modified leukocyte migration and increased tumor growth factor-β production in the wound area, which subsequently promoted angiogenesis to enhance the healing process. By using human dermal fibroblasts, we demonstrate that NO-np increased fibroblast migration and collagen deposition in wounded tissue. Together, these data show that NO-releasing nanoparticles have the ability to modulate and accelerate wound healing in a pleiotropic manner.


Biomaterials | 2010

The use of chitosan to damage Cryptococcus neoformans biofilms

Luis R. Martinez; Mircea Radu Mihu; George Han; Susana Frases; Radames J. B. Cordero; Arturo Casadevall; Adam J. Friedman; Joel M. Friedman; Joshua D. Nosanchuk

The use of indwelling medical devices (e.g. pacemakers, prosthetic joints, catheters, etc) continues to increase, yet these devices are all too often complicated by infections with biofilm-forming microbes with increased resistance to antimicrobial agents and host defense mechanisms. We investigated the ability of chitosan, a polymer isolated from crustacean exoskeletons, to damage biofilms formed by the pathogenic fungus Cryptococcus neoformans. Using 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino) carbonyl]-2H-tetrazolium-hydroxide (XTT) reduction assay and CFU determinations, we showed that chitosan significantly reduced both the metabolic activity of the biofilms and cell viability, respectively. We further demonstrated that chitosan penetrated biofilms and damaged fungal cells using confocal and scanning electron microscopy. Notably, melanization, an important virulence determinant of C. neoformans, did not protect cryptococcal biofilms against chitosan. The chitosan concentrations used in this study to evaluate fungal biofilm susceptibility were not toxic to human endothelial cells. Our results indicate that cryptococcal biofilms are susceptible to treatment with chitosan, suggesting an option for the prevention or treatment of fungal biofilms on indwelling medical devices.


Virulence | 2010

Nitric oxide releasing nanoparticles are therapeutic for Acinetobacter baumannii wound infections

Mircea Radu Mihu; Uriel Sandkovsky; George Han; Joel M. Friedman; Joshua D. Nosanchuk; Luis R. Martinez

Acinetobacter baumannii (Ab) is a frequent cause of hospital acquired pneumonia and recently has increased in incidence as the causative agent of severe disease in troops wounded in Afghanistan and Iraq. Ab clinical isolates are frequently extremely resistant to antimicrobials, significantly complicating our capacity to treat infections due to this pathogen. Hence, the development of innovative therapeutics targeting mechanisms to which the bacteria are unlikely to evolve resistance is urgently needed. We examined the capacity of a nitric oxide -releasing nanoparticle (NO-np) to treat wounds infected with Ab. We found that the NO-nps were therapeutic in an experimental Ab murine wound model. Treatment with NO-nps significantly accelerated healing of infected wounds. Histological study demonstrated that NO-np treatment reduced suppurative inflammation, decreased microbial burden, and reduced the degradation of collagen. Furthermore, NO-np treatment alters the local cytokine milieu. In sum, we demonstrated that the NO-nps are an easily administered topical antimicrobial for the treatment of Ab wound infections, and our findings suggest that NO-nps may also be ideal for use in combat or disaster situations.

Collaboration


Dive into the Luis R. Martinez's collaboration.

Top Co-Authors

Avatar

Joshua D. Nosanchuk

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joel M. Friedman

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Mircea Radu Mihu

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

George Han

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Sanchez

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiu Ham Lee

New York Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge