Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luis Rodrigo Cataldo is active.

Publication


Featured researches published by Luis Rodrigo Cataldo.


Experimental Diabetes Research | 2016

Serotonin- and Dopamine-Related Gene Expression in db/db Mice Islets and in MIN6 β-Cells Treated with Palmitate and Oleate

Luis Rodrigo Cataldo; Maria L. Mizgier; D. Busso; P. Olmos; Jose E. Galgani; R. Valenzuela; D. Mezzano; E. Aranda; V. A. Cortés; José Luis Santos

High circulating nonesterified fatty acids (NEFAs) concentration, often reported in diabetes, leads to impaired glucose-stimulated insulin secretion (GSIS) through not yet well-defined mechanisms. Serotonin and dopamine might contribute to NEFA-dependent β-cell dysfunction, since extracellular signal of these monoamines decreases GSIS. Moreover, palmitate-treated β-cells may enhance the expression of the serotonin receptor Htr2c, affecting insulin secretion. Additionally, the expression of monoamine-oxidase type B (Maob) seems to be lower in islets from humans and mice with diabetes compared to nondiabetic islets, which may lead to increased monoamine concentrations. We assessed the expression of serotonin- and dopamine-related genes in islets from db/db and wild-type (WT) mice. In addition, the effect of palmitate and oleate on the expression of such genes, 5HT content, and GSIS in MIN6 β-cell was determined. Lower Maob expression was found in islets from db/db versus WT mice and in MIN6 β-cells in response to palmitate and oleate treatment compared to vehicle. Reduced 5HT content and impaired GSIS in response to palmitate (−25%; p < 0.0001) and oleate (−43%; p < 0.0001) were detected in MIN6 β-cells. In conclusion, known defects of GSIS in islets from db/db mice and MIN6 β-cells treated with NEFAs are accompanied by reduced Maob expression and reduced 5HT content.


Annals of Nutrition and Metabolism | 2016

Melanocortin-4 Receptor Gene Variation Is Associated with Eating Behavior in Chilean Adults

Javier Andrés Vega; Gloria Salazar; María Isabel Hodgson; Luis Rodrigo Cataldo; Macarena Valladares; Ana María Obregón; José Luis Santos

Background/Aims: To evaluate the association between allelic variants of melanocortin receptors -3 and -4 (MC3R and MC4R, respectively) and leptin receptor (LEPR) genes with body mass index (BMI) and eating behavior. Methods: We selected 344 Chilean adults (57.8% women; age 39.1 ± 6.6 years) with a wide variation in BMI (30.3 ± 6.3 kg/m2). The Three-Factor Eating Questionnaire-R18 that measures uncontrolled eating (UE), emotional eating (EE) and cognitive restraint scores was adapted, validated and assessed for association with BMI. Genotypes were determined by polymerase chain reaction followed by restriction fragment length polymorphism techniques and Taqman assays. Results: Higher EE scores were found in obese vs. non-obese in both men (p = 0.01) and women (p < 0.001). UE scores were significantly associated with BMI only in women (p = 0.002). No significant differences in eating behavior scores or BMI were found by LEPR (rs1137101, rs8179183 and rs1137100 polymorphisms) or MC3R (rs3746619 and rs3827103). Carriers of the C allele for MC4R rs17782313 showed significantly higher scores of UE compared to non-carriers (2.3 ± 0.8 vs. 2.0 ± 0.7; p = 0.02). Additionally, we also report a monogenic case of obesity carrying the pathogenic mutation 449C>T (Thr150Ile) in MC4R gene with no apparent alterations in eating behavior scores. Conclusions: UE scores were higher in C-allele carriers of MC4R-rs17782313 compared to non-carriers.


BMC Medical Genetics | 2012

APOA5 Q97X Mutation Identified through homozygosity mapping causes severe hypertriglyceridemia in a Chilean consanguineous family

Catalina Dussaillant; Valentina Serrano; Alberto Maiz; Susana Eyheramendy; Luis Rodrigo Cataldo; Matías Chavez; Susan V. Smalley; Marcela Fuentes; Attilio Rigotti; Lorena Rubio; Carlos F. Lagos; J. A. Martínez; José Luis Santos

BackgroundSevere hypertriglyceridemia (HTG) has been linked to defects in LPL, APOC2, APOA5, LMF1 and GBIHBP1 genes. However, a number of severe HTG cases are probably caused by as yet unidentified mutations. Very high triglyceride plasma levels (>112 mmol/L at diagnosis) were found in two sisters of a Chilean consanguineous family, which is strongly suggestive of a recessive highly penetrant mutation. The aim of this study was to determine the genetic locus responsible for the severe HTG in this family.MethodsWe carried out a genome-wide linkage study with nearly 300,000 biallelic markers (Illumina Human CytoSNP-12 panel). Using the homozygosity mapping strategy, we searched for chromosome regions with excess of homozygous genotypes in the affected cases compared to non-affected relatives.ResultsA large homozygous segment was found in the long arm of chromosome 11, with more than 2,500 consecutive homozygous SNP shared by the proband with her affected sister, and containing the APOA5/A4/C3/A1 cluster. Direct sequencing of the APOA5 gene revealed a known homozygous nonsense Q97X mutation (p.Gln97Ter) found in both affected sisters but not in non-affected relatives nor in a sample of unrelated controls.ConclusionThe Q97X mutation of the APOA5 gene in homozygous status is responsible for the severe hypertriglyceridemia in this family. We have shown that homozygosity mapping correctly pinpointed the genomic region containing the gene responsible for severe hypertriglyceridemia in this consanguineous Chilean family.


Experimental and Clinical Endocrinology & Diabetes | 2015

Fluoxetine impairs insulin secretion without modifying extracellular serotonin levels in MIN6 β-cells.

Luis Rodrigo Cataldo; Víctor Cortés; Maria L. Mizgier; Aranda E; Mezzano D; Pablo Olmos; Jose E. Galgani; Suazo J; José Luis Santos

INTRODUCTION Pancreatic β-cells synthetize and store Serotonin (5-Hydroxytriptamine, 5HT) which is co-released with insulin. It has been proposed that extracellular 5HT binds to specific cell surface receptors and modulate insulin secretion. On the other hand, Selective Serotonin Reuptake Inhibitor (SSRI) fluoxetine seems to reduce Glucose-Stimulated Insulin Secretion (GSIS). However, it is unknown whether this effect results from changes in extracellular 5HT concentration owed to the blockade of 5HT transporter (SERT) or from non-5HT dependent actions. The aims of this work were: 1) to quantify extracellular 5HT levels and GSIS in β-cell lines, 2) to determine whether extracellular 5HT levels and GSIS are changed by fluoxetine or 5-Hydroxytryptophan (5HTP, the immediate 5HT biosynthetic precursor), and 3) to quantify the expression of Slc6a4 gene (encoding SERT) in β-cell lines in relation to other genes involved in 5HT system. MATERIAL AND METHODS β-cell lines MIN6 and RINm5f were subjected to GSIS protocols, after treatment with fluoxetine, 5HTP or 5HT. Insulin and 5HT were quantified by ELISA and HPLC, respectively. Relative mRNA expression was quantified by RT-qPCR. RESULTS MIN6 β-cells secretes 5HT in response to glucose, showing a sharp increase in 5HT release when cells were preloaded with 5HTP. Treatment with 5HT or fluoxetine reduces GSIS. Fluoxetine fails to further increases 5HTP-induced elevation of secreted 5HT. MIN6 β-cells express both isoforms of Tryptophan Hydroxylase (Tph1 and Tph2), and have high expression levels of L-Dopa decarboxylase (Ddc), both enzymes involved in 5HT biosynthetic pathway, but do not express the 5HT transporters Slc6a4 or Slc6a3 (the Dopamine-5HT transporter) genes. CONCLUSION The inhibitory effect of fluoxetine on β-cell glucose stimulated insulin secretion is not mediated by blockage of 5HT transporter through SERT.


PLOS ONE | 2017

Prolonged Activation of the Htr2b Serotonin Receptor Impairs Glucose Stimulated Insulin Secretion and Mitochondrial Function in MIN6 Cells

Luis Rodrigo Cataldo; Maria L. Mizgier; Roberto Bravo Sagua; Fabián Jaña; César Cárdenas; Paola Llanos; Dolores Busso; Pablo Olmos; Jose E. Galgani; José Luis Santos; Víctor Cortés; Bridget K. Wagner

Aims Pancreatic β-cells synthesize and release serotonin (5 hydroxytryptamine, 5HT); however, the role of 5HT receptors on glucose stimulated insulin secretion (GSIS) and the mechanisms mediating this function is not fully understood. The aims of this study were to determine the expression profile of 5HT receptors in murine MIN6 β-cells and to examine the effects of pharmacological activation of 5HT receptor Htr2b on GSIS and mitochondrial function. Materials and Methods mRNA levels of 5HT receptors in MIN6 cells were quantified by RT qPCR. GSIS was assessed in MIN6 cells in response to global serotonergic activation with 5HT and pharmacological Htr2b activation or inhibition with BW723C86 or SB204741, respectively. In response to Htr2b activation also was evaluated the mRNA and protein levels of PGC1α and PPARy by RT-qPCR and western blotting and mitochondrial function by oxygen consumption rate (OCR) and ATP cellular content. Results We found that mRNA levels of most 5HT receptors were either very low or undetectable in MIN6 cells. By contrast, Htr2b mRNA was present at moderate levels in these cells. Preincubation (6 h) of MIN6 cells with 5HT or BW723C86 reduced GSIS and the effect of 5HT was prevented by SB204741. Preincubation with BW723C86 increased PGC1α and PPARy mRNA and protein levels and decreased mitochondrial respiration and ATP content in MIN6 cells. Conclusions Our results indicate that prolonged Htr2b activation in murine β-cells decreases glucose-stimulated insulin secretion and mitochondrial activity by mechanisms likely dependent on enhanced PGC1α/PPARy expression.


Experimental Diabetes Research | 2017

Leptin/Adiponectin Ratios Using Either Total Or High-Molecular-Weight Adiponectin as Biomarkers of Systemic Insulin Sensitivity in Normoglycemic Women

Carolina Bravo; Luis Rodrigo Cataldo; Jose E. Galgani; Javier Parada; José Luis Santos

Plasma leptin/adiponectin ratio (LAR) is negatively associated with insulin sensitivity indexes. High-molecular-weight adiponectin (HMWA) was proposed as the most biologically active form of this insulin-sensitizing adipokine. There are no studies assessing the relative merits of leptin/HMWA ratio over LAR as a biomarker of systemic insulin sensitivity. A standard 2-hour oral glucose tolerance test (OGTT; 75 g of glucose) and a short minimal-model intravenous glucose tolerance test (IVGTT; 0.3 g/kg body weight) were performed in 58 Chilean normoglycemic women (age: 27 ± 6.3 years, BMI 23.6 ± 3.2 kg/m2). LAR was negatively associated with HOMA-S (r = −0.49; p < 0.0001), Matsuda-ISICOMP (r = −0.54; p < 0.0001), and the calculated sensitivity index (CSi) derived from IVGTT (r = −0.38; p = 0.007). In comparison to LAR, leptin/HMWA ratio did not increase neither the linear fit (r2) nor the magnitude of association with insulin sensitivity indexes (slope of multiple linear regression). The discriminatory capacity of both ratios to classify insulin-resistant versus insulin-sensitive subjects was similar for HOMA-S (p = 0.84), Matsuda-ISICOMP (p = 0.43), or CSi (p = 0.50). In conclusion, LAR showed consistent negative associations with different systemic insulin sensitivity indexes. The use of HMWA to generate leptin/HMWA ratio did not show any advantage over LAR as a biomarker of systemic insulin sensitivity in normoglycemic women.


Experimental Diabetes Research | 2017

Effect of Human Myotubes-Derived Media on Glucose-Stimulated Insulin Secretion

Maria L. Mizgier; Luis Rodrigo Cataldo; Juan Carlos Gutiérrez; José Luis Santos; Mariana Casas; Paola Llanos; Ariel Contreras-Ferrat; Cedric Moro; Karim Bouzakri; Jose E. Galgani

Fasting to postprandial transition requires a tight adjustment of insulin secretion to its demand, so tissue (e.g., skeletal muscle) glucose supply is assured while hypo-/hyperglycemia are prevented. High muscle glucose disposal after meals is pivotal for adapting to increased glycemia and might drive insulin secretion through muscle-released factors (e.g., myokines). We hypothesized that insulin influences myokine secretion and then increases glucose-stimulated insulin secretion (GSIS). In conditioned media from human myotubes incubated with/without insulin (100 nmol/L) for 24 h, myokines were qualitatively and quantitatively characterized using an antibody-based array and ELISA-based technology, respectively. C57BL6/J mice islets and Wistar rat beta cells were incubated for 24 h with control and conditioned media from noninsulin- and insulin-treated myotubes prior to GSIS determination. Conditioned media from insulin-treated versus nontreated myotubes had higher RANTES but lower IL6, IL8, and MCP1 concentration. Qualitative analyses revealed that conditioned media from noninsulin- and insulin-treated myotubes expressed 32 and 23 out of 80 myokines, respectively. Islets incubated with conditioned media from noninsulin-treated myotubes had higher GSIS versus control islets (p < 0.05). Meanwhile, conditioned media from insulin-treated myotubes did not influence GSIS. In beta cells, GSIS was similar across conditions. In conclusion, factors being present in noninsulin-stimulated muscle cell-derived media appear to influence GSIS in mice islets.


Journal of Investigative Medicine | 2018

Plasma MOTS-c levels are associated with insulin sensitivity in lean but not in obese individuals

Luis Rodrigo Cataldo; Rodrigo Fernández-Verdejo; José Luis Santos; Jose E. Galgani

Mitochondrial open reading frame of the 12S rRNA-c (MOTS-c) is a mitochondrial-derived peptide that attenuates weight gain and hyperinsulinemia when administered to high fat-fed mice. MOTS-c is therefore a potential regulator of metabolic homeostasis under conditions of high-energy supply. However, the effect of insulin resistance and obesity on plasma MOTS-c concentration in humans is unknown. To gain insight into MOTS-c regulation, we measured plasma MOTS-c concentration and analyzed its relationship with insulin sensitivity surrogates, in lean and obese humans (n=10 per group). Obese individuals had impaired insulin sensitivity as indicated by low Matsuda and high Homeostatic Model Assessment (HOMA) indexes. Although plasma MOTS-c concentration was similar in lean and obese individuals (0.48±0.16 and 0.52±0.15 ng/mL; p=0.60), it was correlated with HOMA (r=0.53; p<0.05) and Matsuda index (r=−0.46; p<0.05). Notably, when the groups were analyzed separately, the associations remained only in lean individuals. We conclude that plasma MOTS-c concentration is unaltered in human obesity. However, MOTS-c associates positively with insulin resistance mostly in lean individuals, indicating that plasma MOTS-c concentration depends on the metabolic status in this population. Such dependence seems altered when obesity settles. The implications of plasma MOTS-c for human metabolic homeostasis deserve future examination.


Revista Medica De Chile | 2013

Heteroplasmia de la mutación del ADN mitocondrial m.3243A>G en la diabetes y sordera de herencia materna

Luis Rodrigo Cataldo; Pablo Olmos; Susan V. Smalley; Alberto Diez; Alejandra Parada; Roger Gejman; Ricardo Fadic; José Luis Santos

Maternally Inherited Diabetes and Deafness (MIDD) is caused by mutations in mitochondrial DNA (mtDNA), mainly m.3243A>G. Severity, onset and clinical phenotype of MIDD patients are partially determined by the proportion of mutant mitochondrial DNA copies in each cell and tissue (heteroplasmy). The identification of MIDD allows a corred treatment with insulin avoiding drugs that may interfere with mitochondrial electron chain transpon. We estimated the degree of heteroplasmy of the mutation m.3243A>G from blood, saliva, hair root and a muscle biopsy using quantitative PCR (qPCR) in a femole adult patient. For this purpose, PCR producis were inserted in a vector creating plasmids with 3243A or G. Mutant and wild-type vectors were mixed in different proportions to create a calibration curve used to interpolate heteroplasmy percentages with qPCR threshold cycles. The proportions of m.3243A>G heteroplasmy were 62% (muscle), 14% (saliva), 6% (blood leukocytes) and 3% in hair root. Quantitative analysis of heteroplasmy showed marked variations in different tissues (highest in muscle and lowest in blood). Given the relatively high heteroplasmy found in saliva, this type of biological sample may represent an adequate non-invasive way for assessing the presence of m.3243A>G mutations in epidemiologic studies.


Journal of Physiology and Biochemistry | 2013

Plasma levels of interleukin-6 and interleukin-18 after an acute physical exercise: relation with post-exercise energy intake in twins

C. Almada; Luis Rodrigo Cataldo; Susan V. Smalley; E. Diaz; A. Serrano; María Isabel Hodgson; José Luis Santos

Collaboration


Dive into the Luis Rodrigo Cataldo's collaboration.

Top Co-Authors

Avatar

José Luis Santos

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar

Jose E. Galgani

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar

Maria L. Mizgier

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar

Pablo Olmos

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar

Susan V. Smalley

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar

Víctor Cortés

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar

Javier Andrés Vega

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar

María Isabel Hodgson

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Serrano

Pontifical Catholic University of Chile

View shared research outputs
Researchain Logo
Decentralizing Knowledge