Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luis Soares is active.

Publication


Featured researches published by Luis Soares.


Immunity | 2003

GRAIL: An E3 Ubiquitin Ligase that Inhibits Cytokine Gene Transcription Is Expressed in Anergic CD4+ T Cells

Niroshana Anandasabapathy; Gregory S. Ford; Debra Bloom; Claire Holness; Violette Paragas; Christine M. Seroogy; Heidi Skrenta; Marie A. Hollenhorst; C. Garrison Fathman; Luis Soares

T cell anergy may serve to limit autoreactive T cell responses. We examined early changes in gene expression after antigen-TCR signaling in the presence (activation) or absence (anergy) of B7 costimulation. Induced expression of GRAIL (gene related to anergy in lymphocytes) was observed in anergic CD4(+) T cells. GRAIL is a type I transmembrane protein that localizes to the endocytic pathway and bears homology to RING zinc-finger proteins. Ubiquitination studies in vitro support GRAIL function as an E3 ubiquitin ligase. Expression of GRAIL in retrovirally transduced T cell hybridomas dramatically limits activation-induced IL-2 and IL-4 production. Additional studies suggest that GRAIL E3 ubiquitin ligase activity and intact endocytic trafficking are critical for cytokine transcriptional regulation. Expression of GRAIL after an anergizing stimulus may result in ubiquitin-mediated regulation of proteins essential for mitogenic cytokine expression, thus positioning GRAIL as a key player in the induction of the anergic phenotype.


Journal of Clinical Investigation | 2004

Induction of potent antitumor immunity by in situ targeting of intratumoral DCs

Katsuyoshi Furumoto; Luis Soares; Edgar G. Engleman; Miriam Merad

Recent reports of tumor regression following delivery of autologous tumor antigen-pulsed DCs suggest that defective antigen presentation may play a key role in tumor escape. Here we show in two different murine tumor models, CT26 (colon adenocarcinoma) and B16 (melanoma), that the number and activation state of intratumoral DCs are critical factors in the host response to tumors. We used CCL20/macrophage inflammatory protein-3alpha (MIP-3alpha) chemokine to increase the number of tumoral DCs and intratumoral injections of CG-rich motifs (CpGs) to activate such cells. Expression of CCL20 in the tumor site attracted large numbers of circulating DCs into the tumor mass and, in the case of CT26 tumors, led to complete tumor regression. Intratumoral CpG injections, in addition to CCL20, were required to induce therapeutic immunity against B16 tumors. In this model CpG overcame tumor-mediated inhibition of DC activation and enabled tumoral DCs to cross-present tumor antigens to naive CD8 T cells. CpG activation of tumoral DCs alone was not sufficient to induce tumor regression in either tumor model, nor was systemic delivery of the DC growth factor, Flt3 ligand, which dramatically increased the number of circulating DCs but not the number of tumoral DCs. These results indicate that the number of tumoral DCs as well as the tumor milieu determines the ability of tumor-bearing hosts to mount an effective antitumor immune response. Our results also suggest that DCs can be manipulated in vivo without delivery of defined tumor antigens to induce a specific T cell-mediated antitumor response and provide the basis for the use of chemokines in DC-targeted clinical strategies.


Nature Immunology | 2004

Two isoforms of otubain 1 regulate T cell anergy via GRAIL.

Luis Soares; Christine M. Seroogy; Heidi Skrenta; Niroshana Anandasabapathy; Patricia Lovelace; Chan D Chung; Edgar G. Engleman; C. Garrison Fathman

The active ubiquitin E3 ligase GRAIL is crucial in the induction of CD4 T cell anergy. Here we show that GRAIL is associated with and regulated by two isoforms of the ubiquitin-specific protease otubain 1. In lethally irradiated mice reconstituted with bone marrow cells from T cell receptor–transgenic mice retrovirally transduced to express the genes encoding these proteases, otubain 1–expressing cells contained negligible amounts of endogenous GRAIL, proliferated well and produced large amounts of interleukin 2 after antigenic stimulation. In contrast, cells expressing the alternatively spliced isoform, otubain 1 alternative reading frame 1, contained large amounts of endogenous GRAIL and were functionally anergic, and they proliferated poorly and produced undetectable interleukin 2 when stimulated in a similar way. Thus, these two proteins have opposing epistatic functions in controlling the stability of GRAIL expression and the resultant anergy phenotype in T cells.


Journal of Immunology | 2005

Silencing Human NKG2D, DAP10, and DAP12 Reduces Cytotoxicity of Activated CD8+ T Cells and NK Cells

Mobin Karimi; Thai M. Cao; Jeanette Baker; Michael R. Verneris; Luis Soares; Robert S. Negrin

Human CD8+ T cells activated and expanded by TCR cross-linking and high-dose IL-2 acquire potent cytolytic ability against tumors and are a promising approach for immunotherapy of malignant diseases. We have recently reported that in vitro killing by these activated cells, which share phenotypic and functional characteristics with NK cells, is mediated principally by NKG2D. NKG2D is a surface receptor that is expressed by all NK cells and transmits an activating signal via the DAP10 adaptor molecule. Using stable RNA interference induced by lentiviral transduction, we show that NKG2D is required for cytolysis of tumor cells, including autologous tumor cells from patients with ovarian cancer. We also demonstrated that NKG2D is required for in vivo antitumor activity. Furthermore, both activated and expanded CD8+ T cells and NK cells use DAP10. In addition, direct killing was partially dependent on the DAP12 signaling pathway. This requirement by activated and expanded CD8+ T cells for DAP12, and hence stimulus from a putative DAP12-partnered activating surface receptor, persisted when assayed by anti-NKG2D Ab-mediated redirected cytolysis. These studies demonstrated the importance of NKG2D, DAP10, and DAP12 in human effector cell function.


Nature | 2005

An array of possibilities for the study of autoimmunity

C. Garrison Fathman; Luis Soares; Steven M. Chan; Paul J. Utz

Since the completion of the sequencing of the human genome, scientific focus has shifted from studying genes to analysing the much larger number of proteins encoded by them. Several proteins can be generated from a single gene depending on how the genetic information is read (transcribed) and how the resultant protein is modified following translation (post-translational modification). Genomic and proteomic technologies are already providing useful information about autoimmune disease, and they are likely to lead to important discoveries within the next decade.


Journal of Immunology | 2004

The Gene Related to Anergy in Lymphocytes, an E3 Ubiquitin Ligase, Is Necessary for Anergy Induction in CD4 T Cells

Christine M. Seroogy; Luis Soares; Erik A. Ranheim; Leon Su; Claire Holness; Debra Bloom; C. Garrison Fathman

Acquisition of the anergy phenotype in T cells is blocked by inhibitors of protein synthesis and calcineurin activity, suggesting that anergic T cells may have a unique genetic program. Retroviral transduction of hemopoietic stem cells from TCR transgenic mice and subsequent reconstitution of syngeneic mice to express the E3 ubiquitin ligase, gene related to anergy in lymphocytes (GRAIL), or an enzymatically inactive form, H2N2 GRAIL, allowed analysis of the role of GRAIL in T cell anergy in vivo. Constitutive expression of GRAIL was sufficient to render naive CD4 T cells anergic, however, when the enzymatically inactive form H2N2 GRAIL was expressed, it functioned as a dominant negative of endogenous GRAIL and blocked the development of anergy. These data provide direct evidence that a biochemical pathway composed of GRAIL and/or GRAIL-interacting proteins is important in the development of the CD4 T cell anergic phenotype in vivo.


Journal of Immunology | 2006

A Novel E3 Ubiquitin Ligase Substrate Screen Identifies Rho Guanine Dissociation Inhibitor as a Substrate of Gene Related to Anergy in Lymphocytes

Leon Su; Neil Lineberry; Yul Huh; Luis Soares; C. Garrison Fathman

Ubiquitination of eukaryotic proteins regulates a broad range of cellular processes, including regulation of T cell activation and tolerance. We have previously demonstrated that gene related to anergy in lymphocytes (GRAIL), a ring finger ubiquitin E3 ligase, is required for the induction of T cell anergy; however, the substrate(s) for GRAIL E3 ligase activity is/are unknown. In this study, we report a novel prokaryotic system developed to screen for substrates of E3 ligases. Using this screen, Rho guanine dissociation inhibitor (RhoGDI) was identified as a potential substrate of GRAIL. GRAIL was subsequently demonstrated to bind and ubiquitinate RhoGDI, although GRAIL-mediated ubiquitination of RhoGDI did not result in proteosomal degradation. Expression of GRAIL in T cells resulted in specific inhibition of RhoA GTPase activation; activation of Rac1, cdc42, and Ras GTPases were not affected. Interestingly, stable T cell lines expressing dominant-negative RhoA mimicked the GRAIL-mediated IL-2 inhibition phenotype, and T cells expressing constitutively active RhoA were able to overcome GRAIL-mediated inhibition of IL-2 expression. These findings validate our prokaryotic screen as a method of identifying substrates for ubiquitin E3 ligases and suggest a role for Rho effector molecules in T cell anergy.


Immunology Today | 1997

Indirect T-cell allorecognition: perspectives for peptide-based therapy in transplantation l

Gilles Benichou; Robert Tam; Luis Soares; Eugenia V. Fedoseyeva

Indirect allorecognition is an important component of allotransplant rejection. Although the initial indirect alloresponse is limited to a few dominant determinants on donor major histocompatibility complex (MHC) molecules, subsequent spreading to additional determinants on recipient and donor antigens is common. Gilles Benichou and colleagues discuss the mechanisms by which immunodominance is acquired or disrupted in indirect alloresponses, and examine the implications for the design of peptide-based selective immunotherapy in transplantation.


BMC Infectious Diseases | 2011

Dengue-2 structural proteins associate with human proteins to produce a coagulation and innate immune response biased interactome.

Brenda B Folly; Almeriane Maria Weffort-Santos; Charles Fathman; Luis Soares

BackgroundDengue virus infection is a public health threat to hundreds of millions of individuals in the tropical regions of the globe. Although Dengue infection usually manifests itself in its mildest, though often debilitating clinical form, dengue fever, life-threatening complications commonly arise in the form of hemorrhagic shock and encephalitis. The etiological basis for the virus-induced pathology in general, and the different clinical manifestations in particular, are not well understood. We reasoned that a detailed knowledge of the global biological processes affected by virus entry into a cell might help shed new light on this long-standing problem.MethodsA bacterial two-hybrid screen using DENV2 structural proteins as bait was performed, and the results were used to feed a manually curated, global dengue-human protein interaction network. Gene ontology and pathway enrichment, along with network topology and microarray meta-analysis, were used to generate hypothesis regarding dengue disease biology.ResultsCombining bioinformatic tools with two-hybrid technology, we screened human cDNA libraries to catalogue proteins physically interacting with the DENV2 virus structural proteins, Env, cap and PrM. We identified 31 interacting human proteins representing distinct biological processes that are closely related to the major clinical diagnostic feature of dengue infection: haemostatic imbalance. In addition, we found dengue-binding human proteins involved with additional key aspects, previously described as fundamental for virus entry into cells and the innate immune response to infection. Construction of a DENV2-human global protein interaction network revealed interesting biological properties suggested by simple network topology analysis.ConclusionsOur experimental strategy revealed that dengue structural proteins interact with human protein targets involved in the maintenance of blood coagulation and innate anti-viral response processes, and predicts that the interaction of dengue proteins with a proposed human protein interaction network produces a modified biological outcome that may be behind the hallmark pathologies of dengue infection.


Science Signaling | 2004

Using Signaling Pathways to Overcome Immune Tolerance to Tumors

Edgar G. Engleman; Joshua Brody; Luis Soares

The ability of tumors to evade the immune system is thought to result from the inability of T lymphocytes to recognize and respond to tumor antigens. This lack of T cell response may depend on a failure of dendritic cells to present antigen in the proper context so that T cells become tolerant to tumor antigens rather than primed to undergo an immune response. The inability of tumor-associated dendritic cells to effectively present antigen may in turn depend on inhibitory factors in the tumor milieu. Recent experiments suggest that the administration of toll-like receptor ligands stimulate dendritic cell activation and maturation and may thus help overcome T cell tolerance to tumor antigens. Whether or not such an approach is clinically feasible remains to be seen.

Collaboration


Dive into the Luis Soares's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christine M. Seroogy

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leon Su

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge