Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luisa Berná is active.

Publication


Featured researches published by Luisa Berná.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Social wasps are a Saccharomyces mating nest

Irene Stefanini; Leonardo Dapporto; Luisa Berná; Mario Polsinelli; Stefano Turillazzi; Duccio Cavalieri

Significance Despite the widespread interest on Saccharomyces cerevisiae, its wild lifestyle is far from being completely understood, with one of the most resounding examples being its sexual attitude. We show that the intestine of social wasps favors the mating of Saccharomyces strains by providing a succession of environmental conditions prompting sporulation and germination. We also demonstrate that the insect intestine favors hybridization of S. cerevisiae and Saccharomyces paradoxus. Although S. paradoxus survives in wild environments and rarely mates with S. cerevisiae, we discover that two European S. paradoxus strains cannot survive the wasps intestinal environment but can be rescued through interspecific hybridization with S. cerevisiae. These findings are introducing insects as environmental alcoves in which yeast cells can meet and mate. The reproductive ecology of Saccharomyces cerevisiae is still largely unknown. Recent evidence of interspecific hybridization, high levels of strain heterozygosity, and prion transmission suggest that outbreeding occurs frequently in yeasts. Nevertheless, the place where yeasts mate and recombine in the wild has not been identified. We found that the intestine of social wasps hosts highly outbred S. cerevisiae strains as well as a rare S. cerevisiae×S. paradoxus hybrid. We show that the intestine of Polistes dominula social wasps favors the mating of S. cerevisiae strains among themselves and with S. paradoxus cells by providing a succession of environmental conditions prompting cell sporulation and spores germination. In addition, we prove that heterospecific mating is the only option for European S. paradoxus strains to survive in the gut. Taken together, these findings unveil the best hidden secret of yeast ecology, introducing the insect gut as an environmental alcove in which crosses occur, maintaining and generating the diversity of the ascomycetes.


Genome Biology and Evolution | 2014

Evolutionary genomics of fast evolving Tunicates

Luisa Berná; Fernando Alvarez-Valin

Tunicates have been extensively studied because of their crucial phylogenetic location (the closest living relatives of vertebrates) and particular developmental plan. Recent genome efforts have disclosed that tunicates are also remarkable in their genome organization and molecular evolutionary patterns. Here, we review these latter aspects, comparing the similarities and specificities of two model species of the group: Oikopleura dioica and Ciona intestinalis. These species exhibit great genome plasticity and Oikopleura in particular has undergone a process of extreme genome reduction and compaction that can be explained in part by gene loss, but is mostly due to other mechanisms such as shortening of intergenic distances and introns, and scarcity of mobile elements. In Ciona, genome reorganization was less severe being more similar to the other chordates in several aspects. Rates and patterns of molecular evolution are also peculiar in tunicates, being Ciona about 50% faster than vertebrates and Oikopleura three times faster. In fact, the latter species is considered as the fastest evolving metazoan recorded so far. Two processes of increase in evolutionary rates have taken place in tunicates. One of them is more extreme, and basically restricted to genes encoding regulatory proteins (transcription regulators, chromatin remodeling proteins, and metabolic regulators), and the other one is less pronounced but affects the whole genome. Very likely adaptive evolution has played a very significant role in the first, whereas the functional and/or evolutionary causes of the second are less clear and the evidence is not conclusive. The evidences supporting the incidence of increased mutation and less efficient negative selection are presented and discussed.


Research in Microbiology | 2013

The genome sequence of the hydrocarbon-degrading Acinetobacter venetianus VE-C3

Marco Fondi; Ermanno Rizzi; Giovanni Emiliani; Valerio Orlandini; Luisa Berná; Maria Cristiana Papaleo; Elena Perrin; Isabel Maida; Giorgio Corti; Gianluca De Bellis; Franco Baldi; Lenie Dijkshoorn; Mario Vaneechoutte; Renato Fani

Here we report the genome sequence of Acinetobacter venetianus VE-C3, a strain isolated from the Venice Lagoon and known to be able to degrade n-alkanes. Post sequencing analyses revealed that this strain is relatively distantly related to the other Acinetobacter strains completely sequenced so far as shown by phylogenetic analysis and pangenome analysis (1285 genes shared with all the other Acinetobacter genomes sequenced so far). A. venetianus VE-C3 possesses a wide range of determinants whose molecular functions are probably related to the survival in a strongly impacted ecological niche. Among them, genes probably involved in the metabolism of long-chain n-alkanes and in the resistance to toxic metals (e.g. arsenic, cadmium, cobalt and zinc) were found. Genes belonging to these processes were found both on the chromosome and on plasmids. Also, our analysis documented one of the possible genetic bases underlying the strategy adopted by A. venetianus VE-C3 for the adhesion to oil fuel droplets, which could account for the differences existing in this process with other A. venetianus strains. Finally, the presence of a number of DNA mobilization-related genes (i.e. transposases, integrases, resolvases) strongly suggests an important role played by horizontal gene transfer in shaping the genome of A. venetianus VE-C3 and in its adaptation to its special ecological niche.


Comparative and Functional Genomics | 2009

How Fast Is the Sessile Ciona

Luisa Berná; Fernando Alvarez-Valin; Giuseppe D'Onofrio

Genomewide analyses of distances between orthologous gene pairs from the ascidian species Ciona intestinalis and Ciona savignyi were compared with those of vertebrates. Combining this data with a detailed and careful use of vertebrate fossil records, we estimated the time of divergence between the two ascidians nearly 180 My. This estimation was obtained after correcting for the different substitution rates found comparing several groups of chordates; indeed we determine here that on average Ciona species evolve 50% faster than vertebrates.


Nucleic Acids Research | 2012

A computational pipeline to discover highly phylogenetically informative genes in sequenced genomes: application to Saccharomyces cerevisiae natural strains

Matteo Ramazzotti; Luisa Berná; Irene Stefanini; Duccio Cavalieri

The quest for genes representing genetic relationships of strains or individuals within populations and their evolutionary history is acquiring a novel dimension of complexity with the advancement of next-generation sequencing (NGS) technologies. In fact, sequencing an entire genome uncovers genetic variation in coding and non-coding regions and offers the possibility of studying Saccharomyces cerevisiae populations at the strain level. Nevertheless, the disadvantageous cost-benefit ratio (the amount of details disclosed by NGS against the time-expensive and expertise-demanding data assembly process) still precludes the application of these techniques to the routinely assignment of yeast strains, making the selection of the most reliable molecular markers greatly desirable. In this work we propose an original computational approach to discover genes that can be used as a descriptor of the population structure. We found 13 genes whose variability can be used to recapitulate the phylogeny obtained from genome-wide sequences. The same approach that we prove to be successful in yeasts can be generalized to any other population of individuals given the availability of high-quality genomic sequences and of a clear population structure to be targeted.


Genome Announcements | 2014

Genome Sequence of the Native Apiculate Wine Yeast Hanseniaspora vineae T02/19AF

Facundo Giorello; Luisa Berná; Gonzalo Greif; Laura Camesasca; Valentina Salzman; Karina Toscano Medina; Carlos Robello; Carina Gaggero; Pablo S. Aguilar; Francisco Carrau

ABSTRACT The use of novel yeast strains for winemaking improves quality and provides variety including subtle characteristic differences in fine wines. Here we report the first genome of a yeast strain native to Uruguay, Hanseniaspora vineae T02/19AF, which has been shown to positively contribute to aroma and wine quality.


BMC Genomics | 2012

The footprint of metabolism in the organization of mammalian genomes

Luisa Berná; Ankita Chaurasia; Claudia Angelini; Concetta Federico; Salvatore Saccone; Giuseppe D'Onofrio

BackgroundAt present five evolutionary hypotheses have been proposed to explain the great variability of the genomic GC content among and within genomes: the mutational bias, the biased gene conversion, the DNA breakpoints distribution, the thermal stability and the metabolic rate. Several studies carried out on bacteria and teleostean fish pointed towards the critical role played by the environment on the metabolic rate in shaping the base composition of genomes. In mammals the debate is still open, and evidences have been produced in favor of each evolutionary hypothesis. Human genes were assigned to three large functional categories (as well as to the corresponding functional classes) according to the KOG database: (i) information storage and processing, (ii) cellular processes and signaling, and (iii) metabolism. The classification was extended to the organisms so far analyzed performing a reciprocal Blastp and selecting the best reciprocal hit. The base composition was calculated for each sequence of the whole CDS dataset.ResultsThe GC3 level of the above functional categories was increasing from (i) to (iii). This specific compositional pattern was found, as footprint, in all mammalian genomes, but not in frog and lizard ones. Comparative analysis of human versus both frog and lizard functional categories showed that genes involved in the metabolic processes underwent the highest GC3 increment. Analyzing the KOG functional classes of genes, again a well defined intra-genomic pattern was found in all mammals. Not only genes of metabolic pathways, but also genes involved in chromatin structure and dynamics, transcription, signal transduction mechanisms and cytoskeleton, showed an average GC3 level higher than that of the whole genome. In the case of the human genome, the genes of the aforementioned functional categories showed a high probability to be associated with the chromosomal bands.ConclusionsIn the light of different evolutionary hypotheses proposed so far, and contributing with different potential to the genome compositional heterogeneity of mammalian genomes, the one based on the metabolic rate seems to play not a minor role. Keeping in mind similar results reported in bacteria and in teleosts, the specific compositional patterns observed in mammals highlight metabolic rate as unifying factor that fits over a wide range of living organisms.


Marine Genomics | 2010

Metabolic rate and genomic GC: what we can learn from teleost fish.

E. Uliano; Ankita Chaurasia; Luisa Berná; Claudio Agnisola; Giuseppe D'Onofrio

Teleosts are a highly diverse group of animals occupying all kind of aquatic environment. Data on routine mass specific metabolic rate were re-examined correcting them for the Boltzmanns factor. Teleostean fish were grouped in five broad groups, corresponding to major environmental classifications: polar, temperate, sub-tropical, tropical and deep-water. The specific routine metabolic rate, temperature-corrected using the Boltzmanns factor (MR), and the average base composition of genomes (GC%) were calculated in each group. Fish of the polar habitat showed the highest MR. Temperate fish displayed a significantly higher MR than tropical fish, which had the lowest average value. These results were apparently in agreement with the cold adaptation hypothesis. In contrast with this hypothesis, however, the MR of fish living in deep-water environment turned out to be not significantly different from that of fish living in tropical habitats. Most probably, the amount of oxygen dissolved in the water directly affects MR adaptation. Regarding the different habitats, the genomic GC levels showed a decreasing trend similar to that of MR. Indeed, both polar and temperate fish showed a GC level significantly higher than that of both sub-tropical and tropical fish. Plotting the genomic GC levels versus the MR a significant positive correlation was found, supporting the hypothesis that metabolic rate can explain not only the compositional transition mode (e.g. amphibian/mammals), but also the compositional shifting mode (e.g. fish/fish) of evolution observed for vertebrate genomes.


Frontiers in Genetics | 2015

riboFrame: An Improved Method for Microbial Taxonomy Profiling from Non-Targeted Metagenomics

Matteo Ramazzotti; Luisa Berná; Claudio Donati; Duccio Cavalieri

Non-targeted metagenomics offers the unprecedented possibility of simultaneously investigate the microbial profile and the genetic capabilities of a sample by a direct analysis of its entire DNA content. The assessment of the microbial taxonomic composition is frequently obtained by mapping reads to genomic databases that, although growing, are still limited and biased. Here we present riboFrame, a novel procedure for microbial profiling based on the identification and classification of 16S rDNA sequences in non-targeted metagenomics datasets. Reads overlapping the 16S rDNA genes are identified using Hidden Markov Models and a taxonomic assignment is obtained by naïve Bayesian classification. All reads identified as ribosomal are coherently positioned in the 16S rDNA gene, allowing the use of the topology of the gene (i.e., the secondary structure and the location of variable regions) to guide the abundance analysis. We tested and verified the effectiveness of our method on simulated ribosomal data, on simulated metagenomes and on a real dataset. riboFrame exploits the taxonomic potentialities of the 16S rDNA gene in the context of non-targeted metagenomics, giving an accurate perspective on the microbial profile in metagenomic samples.


Environmental Microbiology | 2015

Hsp12p and PAU genes are involved in ecological interactions between natural yeast strains

Damariz Rivero; Luisa Berná; Irene Stefanini; Enrico Baruffini; Agnes Bergerat; Attila Csikász-Nagy; Carlotta De Filippo; Duccio Cavalieri

The coexistence of different yeasts in a single vineyard raises the question on how they communicate and why slow growers are not competed out. Genetically modified laboratory strains of Saccharomyces cerevisiae are extensively used to investigate ecological interactions, but little is known about the genes regulating cooperation and competition in ecologically relevant settings. Here, we present evidences of Hsp12p-dependent altruistic and contact-dependent competitive interactions between two natural yeast isolates. Hsp12p is released during cell death for public benefit by a fast-growing strain that also produces a killer toxin to inhibit growth of a slow grower that can enjoy the benefits of released Hsp12p. We also show that the protein Pau5p is essential in the defense against the killer effect. Our results demonstrate that the combined action of Hsp12p, Pau5p and a killer toxin is sufficient to steer a yeast community.

Collaboration


Dive into the Luisa Berná's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fernando Alvarez-Valin

Stazione Zoologica Anton Dohrn

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge