Luísa G. Carvalheiro
University of Brasília
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Luísa G. Carvalheiro.
Ecology Letters | 2011
Lucas A. Garibaldi; Ingolf Steffan-Dewenter; Claire Kremen; Juan M. Morales; Riccardo Bommarco; Saul A. Cunningham; Luísa G. Carvalheiro; Natacha P. Chacoff; Jan H. Dudenhöffer; Sarah S. Greenleaf; Andrea Holzschuh; Rufus Isaacs; Kristin M. Krewenka; Yael Mandelik; Margaret M. Mayfield; Lora Morandin; Simon G. Potts; Taylor H. Ricketts; Hajnalka Szentgyörgyi; Blandina Felipe Viana; Catrin Westphal; Rachael Winfree; Alexandra M. Klein
Sustainable agricultural landscapes by definition provide high magnitude and stability of ecosystem services, biodiversity and crop productivity. However, few studies have considered landscape effects on the stability of ecosystem services. We tested whether isolation from florally diverse natural and semi-natural areas reduces the spatial and temporal stability of flower-visitor richness and pollination services in crop fields. We synthesised data from 29 studies with contrasting biomes, crop species and pollinator communities. Stability of flower-visitor richness, visitation rate (all insects except honey bees) and fruit set all decreased with distance from natural areas. At 1 km from adjacent natural areas, spatial stability decreased by 25, 16 and 9% for richness, visitation and fruit set, respectively, while temporal stability decreased by 39% for richness and 13% for visitation. Mean richness, visitation and fruit set also decreased with isolation, by 34, 27 and 16% at 1 km respectively. In contrast, honey bee visitation did not change with isolation and represented > 25% of crop visits in 21 studies. Therefore, wild pollinators are relevant for crop productivity and stability even when honey bees are abundant. Policies to preserve and restore natural areas in agricultural landscapes should enhance levels and reliability of pollination services.
Ecology Letters | 2013
Christina M. Kennedy; Eric Lonsdorf; Maile C. Neel; Neal M. Williams; Taylor H. Ricketts; Rachael Winfree; Riccardo Bommarco; Claire Brittain; Alana L. Burley; Daniel P. Cariveau; Luísa G. Carvalheiro; Natacha P. Chacoff; Saul A. Cunningham; Bryan N. Danforth; Jan-Hendrik Dudenhöffer; Elizabeth Elle; Hannah R. Gaines; Lucas A. Garibaldi; Claudio Gratton; Andrea Holzschuh; Rufus Isaacs; Steven K. Javorek; Shalene Jha; Alexandra M. Klein; Kristin M. Krewenka; Yael Mandelik; Margaret M. Mayfield; Lora Morandin; Lisa A. Neame; Mark Otieno
Bees provide essential pollination services that are potentially affected both by local farm management and the surrounding landscape. To better understand these different factors, we modelled the relative effects of landscape composition (nesting and floral resources within foraging distances), landscape configuration (patch shape, interpatch connectivity and habitat aggregation) and farm management (organic vs. conventional and local-scale field diversity), and their interactions, on wild bee abundance and richness for 39 crop systems globally. Bee abundance and richness were higher in diversified and organic fields and in landscapes comprising more high-quality habitats; bee richness on conventional fields with low diversity benefited most from high-quality surrounding land cover. Landscape configuration effects were weak. Bee responses varied slightly by biome. Our synthesis reveals that pollinator persistence will depend on both the maintenance of high-quality habitats around farms and on local management practices that may offset impacts of intensive monoculture agriculture.
Nature Communications | 2015
David Kleijn; Rachael Winfree; Ignasi Bartomeus; Luísa G. Carvalheiro; Mickaël Henry; Rufus Isaacs; Alexandra-Maria Klein; Claire Kremen; Leithen K. M'Gonigle; Romina Rader; Taylor H. Ricketts; Neal M. Williams; Nancy Lee Adamson; John S. Ascher; András Báldi; Péter Batáry; Faye Benjamin; Jacobus C. Biesmeijer; Eleanor J. Blitzer; Riccardo Bommarco; Mariëtte R. Brand; Vincent Bretagnolle; Lindsey Button; Daniel P. Cariveau; Rémy Chifflet; Jonathan F. Colville; Bryan N. Danforth; Elizabeth Elle; Michael P. D. Garratt; Felix Herzog
There is compelling evidence that more diverse ecosystems deliver greater benefits to people, and these ecosystem services have become a key argument for biodiversity conservation. However, it is unclear how much biodiversity is needed to deliver ecosystem services in a cost-effective way. Here we show that, while the contribution of wild bees to crop production is significant, service delivery is restricted to a limited subset of all known bee species. Across crops, years and biogeographical regions, crop-visiting wild bee communities are dominated by a small number of common species, and threatened species are rarely observed on crops. Dominant crop pollinators persist under agricultural expansion and many are easily enhanced by simple conservation measures, suggesting that cost-effective management strategies to promote crop pollination should target a different set of species than management strategies to promote threatened bees. Conserving the biological diversity of bees therefore requires more than just ecosystem-service-based arguments.
Ecology Letters | 2011
Luísa G. Carvalheiro; Ruan Veldtman; Awraris Getachew Shenkute; Gebreamlak Bezabih Tesfay; Christian Walter Werner Pirk; John S. Donaldson; Susan W. Nicolson
Ongoing expansion of large-scale agriculture critically threatens natural habitats and the pollination services they offer. Creating patches with high plant diversity within farmland is commonly suggested as a measure to benefit pollinators. However, farmers rarely adopt such practice, instead removing naturally occurring plants (weeds). By combining pollinator exclusion experiments with analysis of honeybee behaviour and flower-visitation webs, we found that the presence of weeds allowed pollinators to persist within sunflower fields, maximizing the benefits of the remaining patches of natural habitat to productivity of this large-scale crop. Weed diversity increased flower visitor diversity, hence ameliorating the measured negative effects of isolation from natural habitat. Although honeybees were the most abundant visitors, diversity of flower visitors enhanced honeybee movement, being the main factor influencing productivity. Conservation of natural patches combined with promoting flowering plants within crops can maximize productivity and, therefore, reduce the need for cropland expansion, contributing towards sustainable agriculture.
Ecology Letters | 2013
Luísa G. Carvalheiro; William E. Kunin; Petr Keil; Jesús Aguirre-Gutiérrez; W.N. Ellis; Richard Fox; Quentin Groom; S.M. Hennekens; Wouter Van Landuyt; Dirk Maes; Frank Van de Meutter; Denis Michez; Pierre Rasmont; Baudewijn Ode; Simon G. Potts; Menno Reemer; Stuart Roberts; J.H.J. Schaminée; Michiel F. WallisDeVries; Jacobus C. Biesmeijer
Concern about biodiversity loss has led to increased public investment in conservation. Whereas there is a widespread perception that such initiatives have been unsuccessful, there are few quantitative tests of this perception. Here, we evaluate whether rates of biodiversity change have altered in recent decades in three European countries (Great Britain, Netherlands and Belgium) for plants and flower visiting insects. We compared four 20-year periods, comparing periods of rapid land-use intensification and natural habitat loss (1930–1990) with a period of increased conservation investment (post-1990). We found that extensive species richness loss and biotic homogenisation occurred before 1990, whereas these negative trends became substantially less accentuated during recent decades, being partially reversed for certain taxa (e.g. bees in Great Britain and Netherlands). These results highlight the potential to maintain or even restore current species assemblages (which despite past extinctions are still of great conservation value), at least in regions where large-scale land-use intensification and natural habitat loss has ceased.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Romina Rader; Ignasi Bartomeus; Lucas A. Garibaldi; Michael P. D. Garratt; Brad G. Howlett; Rachael Winfree; Saul A. Cunningham; Margaret M. Mayfield; Anthony D. Arthur; Georg K.S. Andersson; Riccardo Bommarco; Claire Brittain; Luísa G. Carvalheiro; Natacha P. Chacoff; Martin H. Entling; Benjamin Foully; Breno Magalhães Freitas; Barbara Gemmill-Herren; Jaboury Ghazoul; Sean R. Griffin; C. L. Gross; Lina Herbertsson; Felix Herzog; Juliana Hipólito; Sue Jaggar; Frank Jauker; Alexandra-Maria Klein; David Kleijn; Smitha Krishnan; Camila Q. Lemos
Significance Many of the world’s crops are pollinated by insects, and bees are often assumed to be the most important pollinators. To our knowledge, our study is the first quantitative evaluation of the relative contribution of non-bee pollinators to global pollinator-dependent crops. Across 39 studies we show that insects other than bees are efficient pollinators providing 39% of visits to crop flowers. A shift in perspective from a bee-only focus is needed for assessments of crop pollinator biodiversity and the economic value of pollination. These studies should also consider the services provided by other types of insects, such as flies, wasps, beetles, and butterflies—important pollinators that are currently overlooked. Wild and managed bees are well documented as effective pollinators of global crops of economic importance. However, the contributions by pollinators other than bees have been little explored despite their potential to contribute to crop production and stability in the face of environmental change. Non-bee pollinators include flies, beetles, moths, butterflies, wasps, ants, birds, and bats, among others. Here we focus on non-bee insects and synthesize 39 field studies from five continents that directly measured the crop pollination services provided by non-bees, honey bees, and other bees to compare the relative contributions of these taxa. Non-bees performed 25–50% of the total number of flower visits. Although non-bees were less effective pollinators than bees per flower visit, they made more visits; thus these two factors compensated for each other, resulting in pollination services rendered by non-bees that were similar to those provided by bees. In the subset of studies that measured fruit set, fruit set increased with non-bee insect visits independently of bee visitation rates, indicating that non-bee insects provide a unique benefit that is not provided by bees. We also show that non-bee insects are not as reliant as bees on the presence of remnant natural or seminatural habitat in the surrounding landscape. These results strongly suggest that non-bee insect pollinators play a significant role in global crop production and respond differently than bees to landscape structure, probably making their crop pollination services more robust to changes in land use. Non-bee insects provide a valuable service and provide potential insurance against bee population declines.
PLOS ONE | 2013
Jesús Aguirre-Gutiérrez; Luísa G. Carvalheiro; Chiara Polce; E. Emiel van Loon; Niels Raes; Menno Reemer; Jacobus C. Biesmeijer
Understanding species distributions and the factors limiting them is an important topic in ecology and conservation, including in nature reserve selection and predicting climate change impacts. While Species Distribution Models (SDM) are the main tool used for these purposes, choosing the best SDM algorithm is not straightforward as these are plentiful and can be applied in many different ways. SDM are used mainly to gain insight in 1) overall species distributions, 2) their past-present-future probability of occurrence and/or 3) to understand their ecological niche limits (also referred to as ecological niche modelling). The fact that these three aims may require different models and outputs is, however, rarely considered and has not been evaluated consistently. Here we use data from a systematically sampled set of species occurrences to specifically test the performance of Species Distribution Models across several commonly used algorithms. Species range in distribution patterns from rare to common and from local to widespread. We compare overall model fit (representing species distribution), the accuracy of the predictions at multiple spatial scales, and the consistency in selection of environmental correlations all across multiple modelling runs. As expected, the choice of modelling algorithm determines model outcome. However, model quality depends not only on the algorithm, but also on the measure of model fit used and the scale at which it is used. Although model fit was higher for the consensus approach and Maxent, Maxent and GAM models were more consistent in estimating local occurrence, while RF and GBM showed higher consistency in environmental variables selection. Model outcomes diverged more for narrowly distributed species than for widespread species. We suggest that matching study aims with modelling approach is essential in Species Distribution Models, and provide suggestions how to do this for different modelling aims and species’ data characteristics (i.e. sample size, spatial distribution).
Science | 2016
Lucas A. Garibaldi; Luísa G. Carvalheiro; Vaissière Be; Gemmill-Herren B; Juliana Hipólito; Breno Magalhães Freitas; Ngo Ht; Azzu N; Sáez A; Åström J; An J; Blochtein B; D. Buchori; Chamorro García Fj; Oliveira da Silva F; Devkota K; Ribeiro Mde F; Freitas L; Maria Cristina Gaglianone; Maria Goss; Irshad M; Kasina M; Pacheco Filho Aj; Kiill Lh; Kwapong P; Parra Gn; Carmen S. S. Pires; Pires; Rawal Rs; Rizali A
More-diverse pollinators improve crop yields It is known that increased pollinator diversity can improve the yield of agricultural crops. However, how best to both produce food and maintain diversity is still debated. Garibaldi et al. show that on small farms, which provide food for the most vulnerable populations globally, pollinator diversity can significantly increase productivity. Thus, the management of crops and surrounding areas for ecological health is likely to benefit both wild pollinator populations and farmers. Science, this issue p. 388 A large international data set confirms that increased diversity of wild pollinators increases crop yields. Ecological intensification, or the improvement of crop yield through enhancement of biodiversity, may be a sustainable pathway toward greater food supplies. Such sustainable increases may be especially important for the 2 billion people reliant on small farms, many of which are undernourished, yet we know little about the efficacy of this approach. Using a coordinated protocol across regions and crops, we quantify to what degree enhancing pollinator density and richness can improve yields on 344 fields from 33 pollinator-dependent crop systems in small and large farms from Africa, Asia, and Latin America. For fields less than 2 hectares, we found that yield gaps could be closed by a median of 24% through higher flower-visitor density. For larger fields, such benefits only occurred at high flower-visitor richness. Worldwide, our study demonstrates that ecological intensification can create synchronous biodiversity and yield outcomes.
Ecology Letters | 2008
Luísa G. Carvalheiro; Yvonne M. Buckley; Rita Ventim; Simon V. Fowler; Jane Memmott
Despite current concern about the safety of biological control of weeds, assessing the indirect impacts of introduced agents is not common practice. Using 17 replicate food webs, we demonstrate that the use of a highly host-plant specific weed biocontrol agent, recently introduced into Australia, is associated with declines of local insect communities. The agent shares natural enemies (predators and parasitoids) with seed herbivore species from native plants, so apparent competition is the most likely cause for these losses. Both species richness and abundance in insect communities (seed herbivores and their parasitoids) were negatively correlated with the abundance of the biocontrol agent. Local losses of up to 11 species (dipteran seed herbivores and parasitoids) took place as the biocontrol agent abundance increased. Ineffective biocontrol agents that remain highly abundant in the community are most likely to have persistent, indirect negative effects. Our findings suggest that more investment is required in pre-release studies on the effectiveness of biocontrol agents, as well as in post-release studies assessing indirect impacts, to avoid or minimize the release of potentially damaging species.
Ecology Letters | 2014
Luísa G. Carvalheiro; Jacobus C. Biesmeijer; Gita Benadi; Jochen Fründ; Martina Stang; Ignasi Bartomeus; Christopher N. Kaiser-Bunbury; Mathilde Baude; Sofia I. F. Gomes; Vincent Merckx; Katherine C. R. Baldock; Andrew T. D. Bennett; Ruth Boada; Riccardo Bommarco; Ralph V. Cartar; Natacha P. Chacoff; Juliana Dänhardt; Lynn V. Dicks; Carsten F. Dormann; Johan Ekroos; Kate S. E. Henson; Andrea Holzschuh; Robert R. Junker; Martha Lopezaraiza-Mikel; Jane Memmott; Ana Montero-Castaño; Isabel L. Nelson; Theodora Petanidou; Eileen F. Power; Maj Rundlöf
Co-flowering plant species commonly share flower visitors, and thus have the potential to influence each others pollination. In this study we analysed 750 quantitative plant-pollinator networks from 28 studies representing diverse biomes worldwide. We show that the potential for one plant species to influence another indirectly via shared pollinators was greater for plants whose resources were more abundant (higher floral unit number and nectar sugar content) and more accessible. The potential indirect influence was also stronger between phylogenetically closer plant species and was independent of plant geographic origin (native vs. non-native). The positive effect of nectar sugar content and phylogenetic proximity was much more accentuated for bees than for other groups. Consequently, the impact of these factors depends on the pollination mode of plants, e.g. bee or fly pollinated. Our findings may help predict which plant species have the greatest importance in the functioning of plant-pollination networks.