Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luisa Lanfrancone is active.

Publication


Featured researches published by Luisa Lanfrancone.


Nature | 1999

The p66shc adaptor protein controls oxidative stress response and life span in mammals.

Enrica Migliaccio; Marco Giorgio; Simonetta Mele; Giuliana Pelicci; Paolo Reboldi; Pier Paolo Pandolfi; Luisa Lanfrancone; Pier Giuseppe Pelicci

Gene mutations in invertebrates have been identified that extend life span and enhance resistance to environmental stresses such as ultraviolet light or reactive oxygen species. In mammals, the mechanisms that regulate stress response are poorly understood and no genes are known to increase individual life span. Here we report that targeted mutation of the mouse p66shc gene induces stress resistance and prolongs life span. p66shc is a splice variant of p52shc/p46shc (ref. 2), a cytoplasmic signal transducer involved in the transmission of mitogenic signals from activated receptors to Ras. We show that: (1) p66shc is serine phosphorylated upon treatment with hydrogen peroxide (H2O2) or irradiation with ultraviolet light; (2) ablation of p66shc enhances cellular resistance to apoptosis induced by H2O2 or ultraviolet light; (3) a serine-phosphorylation defective mutant of p66shc cannot restore the normal stress response in p66shc-/- cells; (4) the p53 and p21 stress response is impaired in p66shc-/- cells; (5) p66shc-/- mice have increased resistance to paraquat and a 30% increase in life span. We propose that p66shc is part of a signal transduction pathway that regulates stress apoptotic responses and life span in mammals.


Cell | 1992

A novel transforming protein (SHC) with an SH2 domain is implicated in mitogenic signal transduction.

Giuliana Pelicci; Luisa Lanfrancone; Francesco Grignani; Jane McGlade; Federica Cavallo; Guido Forni; Ildo Nicoletti; Fausto Grignani; Tony Pawson; Pier Giuseppe Pelicci

A new SH2-containing sequence, SHC, was isolated by screening cDNA libraries with SH2 representative DNA probes. The SHC cDNA is predicted to encode overlapping proteins of 46.8 and 51.7 kd that contain a single C-terminal SH2 domain, and an adjacent glycine/proline-rich motif with regions of homology with the alpha 1 chain of collagen, but no identifiable catalytic domain. Anti-SHC antibodies recognized three proteins of 46, 52, and 66 kd in a wide range of mammalian cell lines. These SHC proteins complexed with and were phosphorylated by activated epidermal growth factor receptor. The physical association of SHC proteins with activated receptors was recreated in vitro by using a bacterially expressed SHC SH2 domain. NIH 3T3 mouse fibroblasts that constitutively overexpressed SHC acquired a transformed phenotype in culture and formed tumors in nude mice. These results suggest that the SHC gene products couple activated growth factor receptors to a signaling pathway that regulates the proliferation of mammalian cells.


Oncogene | 2002

A p53-p66Shc signalling pathway controls intracellular redox status, levels of oxidation-damaged DNA and oxidative stress-induced apoptosis.

Mirella Trinei; Marco Giorgio; Angelo Cicalese; Sara Barozzi; Andrea Ventura; Enrica Migliaccio; Elisabetta Milia; Ines Martin Padura; Veronica A. Raker; Marco Maccarana; Valeria Petronilli; Saverio Minucci; Paolo Bernardi; Luisa Lanfrancone; Pier Giuseppe Pelicci

Correlative evidence links stress, accumulation of oxidative cellular damage and ageing in lower organisms and in mammals. We investigated their mechanistic connections in p66Shc knockout mice, which are characterized by increased resistance to oxidative stress and extended life span. We report that p66Shc acts as a downstream target of the tumour suppressor p53 and is indispensable for the ability of stress-activated p53 to induce elevation of intracellular oxidants, cytochrome c release and apoptosis. Other functions of p53 are not influenced by p66Shc expression. In basal conditions, p66Shc−/− and p53−/− cells have reduced amounts of intracellular oxidants and oxidation-damaged DNA. We propose that steady-state levels of intracellular oxidants and oxidative damage are genetically determined and regulated by a stress-induced signal transduction pathway involving p53 and p66Shc.


The EMBO Journal | 1997

Opposite effects of the p52shc/p46shc and p66shc splicing isoforms on the EGF receptor–MAP kinase–fos signalling pathway

Enrica Migliaccio; Simonetta Mele; Anna Elisabetta Salcini; Giuliana Pelicci; Ka-Man Venus Lai; Giulio Superti-Furga; Tony Pawson; Pier Paolo Di Fiore; Luisa Lanfrancone; Pier Giuseppe Pelicci

Shc proteins are targets of activated tyrosine kinases and are implicated in the transmission of activation signals to Ras. The p46shc and p52shc isoforms share a C‐terminal SH2 domain, a proline‐ and glycine‐rich region (collagen homologous region 1; CH1) and a N‐terminal PTB domain. We have isolated cDNAs encoding for a third Shc isoform, p66shc. The predicted amino acid sequence of p66shc overlaps that of p52shc and contains a unique N‐terminal region which is also rich in glycines and prolines (CH2). p52shc/p46shc is found in every cell type with invariant reciprocal relationship, whereas p66shc expression varies from cell type to cell type. p66shc differs from p52shc/p46shc in its inability to transform mouse fibroblasts in vitro. Like p52shc/p46shc, p66shc is tyrosine‐phosphorylated upon epidermal growth factor (EGF) stimulation, binds to activated EGF receptors (EGFRs) and forms stable complexes with Grb2. However, unlike p52shc/p46shc it does not increase EGF activation of MAP kinases, but inhibits fos promoter activation. The isolated CH2 domain retains the inhibitory effect of p66shc on the fos promoter. p52shc/p46shc and p66shc, therefore, appear to exert different effects on the EGFR‐MAP kinase and other signalling pathways that control fos promoter activity. Regulation of p66shc expression might, therefore, influence the cellular response to growth factors.


Trends in Biochemical Sciences | 1996

Not all Shc's roads lead to Ras

Laura Bonfini; Enrica Migliaccio; Giuliana Pelicci; Luisa Lanfrancone; Pier Giuseppe Pelicci

The Shc proteins have been implicated in the Ras signaling pathway by virtue of their association with the Grb2 adaptor molecule. Several lines of evidence indicate that this association is indeed involved in Ras activation. More recent experiments in mammalian tissue culture cells suggest that domains unique to Shc isoforms, named CH1 and CH2, might be involved in a new network of protein-protein interactions, and hint at other roles that Shc might play in addition to Ras activation.


Molecular and Cellular Biology | 2004

p66SHC Promotes Apoptosis and Antagonizes Mitogenic Signaling in T Cells

Sonia Pacini; Michela Pellegrini; Enrica Migliaccio; Laura Patrussi; Cristina Ulivieri; Andrea Ventura; Fabio Carraro; Antonella Naldini; Luisa Lanfrancone; Pier Giuseppe Pelicci; Cosima T. Baldari

ABSTRACT Of the three Shc isoforms, p66Shc is responsible for fine-tuning p52/p46Shc signaling to Ras and has been implicated in apoptotic responses to oxidative stress. Here we show that human peripheral blood lymphocytes and mouse thymocytes and splenic T cells acquire the capacity to express p66Shc in response to apoptogenic stimulation. Using a panel of T-cell transfectants and p66Shc−/− T cells, we show that p66Shc expression results in increased susceptibility to apoptogenic stimuli, which depends on Ser36 phosphorylation and correlates with an altered balance in apoptosis-regulating gene expression. Furthermore, p66Shc blunts mitogenic responses to T-cell receptor engagement, at least in part by transdominant inhibition of p52Shc signaling to Ras/mitogen-activated protein kinases, in an S36-dependent manner. The data highlight a novel interplay between p66Shc and p52Shc in the control of T-cell fate.


Cancer Research | 2008

Tbx3 Represses E-Cadherin Expression and Enhances Melanoma Invasiveness

Mercedes Rodriguez; Ewa Aladowicz; Luisa Lanfrancone; Colin R. Goding

The T-box transcription factors Tbx2 and Tbx3 are overexpressed in many cancers and in melanoma promote proliferation by actively suppressing senescence. Whether they also contribute to tumor progression via other mechanisms is not known. Here, we identify a novel role for these factors, providing evidence that Tbx3, and potentially Tbx2, directly repress the expression of E-cadherin, a keratinocyte-melanoma adhesion molecule whose loss is required for the acquisition of an invasive phenotype. Overexpression of Tbx2 and Tbx3 in melanoma cells down-regulates endogenous E-cadherin expression, whereas depletion of Tbx3, but not Tbx2, increases E-cadherin mRNA and protein levels and decreases melanoma invasiveness in vitro. Consistent with these observations, in melanoma tissue, Tbx3 and E-cadherin expression are inversely correlated. Depletion of Tbx3 also leads to substantial up-regulation of Tbx2. The results suggest that Tbx2 and Tbx3 may play a dual role during the radial to vertical growth phase transition by both inhibiting senescence via repression of p21(CIP1) expression, and enhancing melanoma invasiveness by decreasing E-cadherin levels.


Oncogene | 1997

The RIα subunit of protein kinase A (PKA) binds to Grb2 and allows PKA interaction with the activated EGF-Receptor

Giampaolo Tortora; Vincenzo Damiano; Caterina Bianco; Gustavo Baldassarre; A. Raffaele Bianco; Luisa Lanfrancone; Pier Giuseppe Pelicci; Fortunato Ciardiello

Functional interactions between protein kinase A (PKA) and epidermal growth factor receptor (EGF-R) signalling pathways have been suggested. Unlike the type II isoform of PKA (PKAII), the type I (PKAI) and/or its regulatory subunit RIα are generally overexpressed in cancer cells and are induced following transforming growth factor α (TGFα)/EGF-R-dependent transformation. Downregulation of RIα/PKAI inhibits TGFα expression and EGF-R-dependent signalling. We have previously shown that addition of EGF to quiescent human normal epithelial MCF-10A cells determines PKAI expression and cell membrane translocation before cells enter S phase, while PKAI inhibition prevents S phase entry. Constitutive overexpression of PKAI confers the ability to grow in serum free medium, bypassing EGF requirement. Here we demonstrate a direct interaction of PKAI, but not of PKAII, with the activated EGF-R, that occurs within 5 min following EGF treatment of MCF-10A cells. Moreover, induction of mitogen-activated protein kinase (MAPK) activity following EGF-R activation is mimicked by PKAI overexpression and inhibited by downregulators of PKAI. Finally, the PKAI – EGF-R association occurs through the binding of RIα to the SH3 domain(s) of Grb2 adaptor protein, thus allowing the recruitment of the PKAI holoenzyme to the activated EGF-R. This is the first demonstration of a direct interaction of PKAI with the activated EGF-R macromolecular signalling complex.


Hypertension | 2005

Genetic deletion of the p66 Shc adaptor protein protects from angiotensin II-induced myocardial damage

Gallia Graiani; Costanza Lagrasta; Enrica Migliaccio; Frank Spillmann; Marco Meloni; Paolo Madeddu; Federico Quaini; Ines Martin Padura; Luisa Lanfrancone; Pier Giuseppe Pelicci; Costanza Emanueli

Angiotensin II (Ang II), acting through its G protein–coupled AT1 receptor (AT1), contributes to the precocious heart senescence typical of patients with hypertension, atherosclerosis, and diabetes. AT1 was suggested to transactivate an intracellular signaling controlled by growth factors and their tyrosin-kinase receptors. In cultured vascular smooth muscle cells, this downstream mechanism comprises the p66Shc adaptor protein, previously recognized to play a role in vascular cell senescence and death. The aim of the present study was 2-fold: (1) to characterize the cardiovascular phenotype of p66Shc knockout mice (p66Shc−/−), and (2) to test the novel hypothesis that disrupting the p66Shc might protect the heart from the damaging action of elevated Ang II levels. Compared with wild-type littermates (p66Shc+/+), p66Shc−/− showed similar blood pressure, heart rate, and left ventricular wall thickness. However, cardiomyocyte number was increased in mutant animals, indicating a condition of myocardial hyperplasia. In p66Shc+/+, infusion of a sub-pressor dose of Ang II (300 nmol/kg body weight [BW] daily for 28 days) caused left ventricular hypertrophy and apoptotic death of cardiomyocytes and endothelial cells. In contrast, p66Shc−/− were resistant to the proapoptotic/hypertrophic action of Ang II. Consistently, in vitro experiments showed that Ang II causes apoptotic death of cardiomyocytes isolated from p66Shc+/+ hearts to a greater extent as compared with p66Shc−/− cardiomyocytes. Our results indicate a fundamental role of p66Shc in Ang II–mediated myocardial remodeling. In perspective, p66Shc inhibition may be envisioned as a novel way to prevent the deleterious effects of Ang II on the heart.


Nature Reviews Cancer | 2017

Interrogating open issues in cancer precision medicine with patient-derived xenografts

Annette T. Byrne; Denis Alferez; Frédéric Amant; Daniela Annibali; J. Arribas; Andrew V. Biankin; Alejandra Bruna; Eva Budinská; Carlos Caldas; David K. Chang; Robert B. Clarke; Hans Clevers; George Coukos; Virginie Dangles-Marie; S. Gail Eckhardt; Eva González-Suárez; Els Hermans; Manuel Hidalgo; Monika A. Jarzabek; Steven de Jong; Jos Jonkers; Kristel Kemper; Luisa Lanfrancone; Gunhild M. Mælandsmo; Elisabetta Marangoni; Jean Christophe Marine; Enzo Medico; Jens Henrik Norum; Héctor G. Pálmer; Daniel S. Peeper

Patient-derived xenografts (PDXs) have emerged as an important platform to elucidate new treatments and biomarkers in oncology. PDX models are used to address clinically relevant questions, including the contribution of tumour heterogeneity to therapeutic responsiveness, the patterns of cancer evolutionary dynamics during tumour progression and under drug pressure, and the mechanisms of resistance to treatment. The ability of PDX models to predict clinical outcomes is being improved through mouse humanization strategies and the implementation of co-clinical trials, within which patients and PDXs reciprocally inform therapeutic decisions. This Opinion article discusses aspects of PDX modelling that are relevant to these questions and highlights the merits of shared PDX resources to advance cancer medicine from the perspective of EurOPDX, an international initiative devoted to PDX-based research.

Collaboration


Dive into the Luisa Lanfrancone's collaboration.

Top Co-Authors

Avatar

Pier Giuseppe Pelicci

European Institute of Oncology

View shared research outputs
Top Co-Authors

Avatar

Enrica Migliaccio

European Institute of Oncology

View shared research outputs
Top Co-Authors

Avatar

Giuliana Pelicci

European Institute of Oncology

View shared research outputs
Top Co-Authors

Avatar

Cosima T. Baldari

European Institute of Oncology

View shared research outputs
Top Co-Authors

Avatar

Daniela Bossi

European Institute of Oncology

View shared research outputs
Top Co-Authors

Avatar

Angelo Cicalese

European Institute of Oncology

View shared research outputs
Top Co-Authors

Avatar

Simona Punzi

European Institute of Oncology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge