Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luisa M. Figueiredo is active.

Publication


Featured researches published by Luisa M. Figueiredo.


Genes & Development | 2009

Four histone variants mark the boundaries of polycistronic transcription units in Trypanosoma brucei

T. N. Siegel; Doeke R. Hekstra; L. E. Kemp; Luisa M. Figueiredo; Joanna E. Lowell; David Fenyö; Xianlong Wang; Scott Dewell; George A.M. Cross

Unusually for a eukaryote, genes transcribed by RNA polymerase II (pol II) in Trypanosoma brucei are arranged in polycistronic transcription units. With one exception, no pol II promoter motifs have been identified, and how transcription is initiated remains an enigma. T. brucei has four histone variants: H2AZ, H2BV, H3V, and H4V. Using chromatin immunoprecipitation (ChIP) and sequencing (ChIP-seq) to examine the genome-wide distribution of chromatin components, we show that histones H4K10ac, H2AZ, H2BV, and the bromodomain factor BDF3 are enriched up to 300-fold at probable pol II transcription start sites (TSSs). We also show that nucleosomes containing H2AZ and H2BV are less stable than canonical nucleosomes. Our analysis also identifies >60 unexpected TSS candidates and reveals the presence of long guanine runs at probable TSSs. Apparently unique to trypanosomes, additional histone variants H3V and H4V are enriched at probable pol II transcription termination sites. Our findings suggest that histone modifications and histone variants play crucial roles in transcription initiation and termination in trypanosomes and that destabilization of nucleosomes by histone variants is an evolutionarily ancient and general mechanism of transcription initiation, demonstrated in an organism in which general pol II transcription factors have been elusive.


PLOS ONE | 2008

Telomeric Expression Sites Are Highly Conserved in Trypanosoma brucei

Christiane Hertz-Fowler; Luisa M. Figueiredo; Michael A. Quail; Marion Becker; Andrew C Jackson; Nathalie Bason; Karen Brooks; Carol Churcher; Samah Fahkro; Ian Goodhead; Paul Trafford Heath; Magdalena Kartvelishvili; Karen Mungall; David K. Harris; Heidi Hauser; Mandy Sanders; David L. Saunders; Kathy Seeger; Sarah Sharp; Jesse E. Taylor; Danielle Walker; Brian R. White; Rosanna Young; George A.M. Cross; Gloria Rudenko; J. David Barry; Edward J. Louis; Matthew Berriman

Subtelomeric regions are often under-represented in genome sequences of eukaryotes. One of the best known examples of the use of telomere proximity for adaptive purposes are the bloodstream expression sites (BESs) of the African trypanosome Trypanosoma brucei. To enhance our understanding of BES structure and function in host adaptation and immune evasion, the BES repertoire from the Lister 427 strain of T. brucei were independently tagged and sequenced. BESs are polymorphic in size and structure but reveal a surprisingly conserved architecture in the context of extensive recombination. Very small BESs do exist and many functioning BESs do not contain the full complement of expression site associated genes (ESAGs). The consequences of duplicated or missing ESAGs, including ESAG9, a newly named ESAG12, and additional variant surface glycoprotein genes (VSGs) were evaluated by functional assays after BESs were tagged with a drug-resistance gene. Phylogenetic analysis of constituent ESAG families suggests that BESs are sequence mosaics and that extensive recombination has shaped the evolution of the BES repertoire. This work opens important perspectives in understanding the molecular mechanisms of antigenic variation, a widely used strategy for immune evasion in pathogens, and telomere biology.


PLOS Biology | 2008

A Histone Methyltransferase Modulates Antigenic Variation in African Trypanosomes

Luisa M. Figueiredo; Christian J. Janzen; George A.M. Cross

To evade the host immune system, several pathogens periodically change their cell-surface epitopes. In the African trypanosomes, antigenic variation is achieved by tightly regulating the expression of a multigene family encoding a large repertoire of variant surface glycoproteins (VSGs). Immune evasion relies on two important features: exposing a single type of VSG at the cell surface and periodically and very rapidly switching the expressed VSG. Transcriptional switching between resident telomeric VSG genes does not involve DNA rearrangements, and regulation is probably epigenetic. The histone methyltransferase DOT1B is a nonessential protein that trimethylates lysine 76 of histone H3 in Trypanosoma brucei. Here we report that transcriptionally silent telomeric VSGs become partially derepressed when DOT1B is deleted, whereas nontelomeric loci are unaffected. DOT1B also is involved in the kinetics of VSG switching: in ΔDOT1B cells, the transcriptional switch is so slow that cells expressing two VSGs persist for several weeks, indicating that monoallelic transcription is compromised. We conclude that DOT1B is required to maintain strict VSG silencing and to ensure rapid transcriptional VSG switching, demonstrating that epigenetics plays an important role in regulating antigenic variation in T. brucei.


Cell | 2009

RAP1 Is Essential for Silencing Telomeric Variant Surface Glycoprotein Genes in Trypanosoma brucei

Xiaofeng Yang; Luisa M. Figueiredo; Amin Espinal; Eiji Okubo; Bibo Li

Trypanosoma brucei expresses variant surface glycoprotein (VSG) genes in a strictly monoallelic fashion in its mammalian hosts, but it is unclear how this important virulence mechanism is enforced. Telomere position effect, an epigenetic phenomenon, has been proposed to play a critical role in VSG regulation, yet no telomeric protein has been identified whose disruption led to VSG derepression. We now identify tbRAP1 as an intrinsic component of the T. brucei telomere complex and a major regulator for silencing VSG expression sites (ESs). Knockdown of tbRAP1 led to derepression of all VSGs in silent ESs, but not VSGs located elsewhere, and resulted in stronger derepression of genes located within 10 kb from telomeres than genes located further upstream. This graduated silencing pattern suggests that telomere integrity plays a key role in tbRAP1-dependent silencing and VSG regulation.


The EMBO Journal | 2002

A central role for Plasmodium falciparum subtelomeric regions in spatial positioning and telomere length regulation

Luisa M. Figueiredo; Lucio H. Freitas-Junior; Emmanuel Bottius; Jean-Christophe Olivo-Marin; Artur Scherf

In the protozoan malaria parasite, Plasmodium falciparum, the telomere‐associated sequences (TASs) of the 14 linear chromosomes display a similar higher order organization and form clusters of four to seven telomeres localized at the nuclear periphery. Experimental evidence has shown that the physical tethering of chromosome ends enhances the ectopic recombination between gene families involved in antigenic variation and parasite sequestration. Using FISH analysis, we observed that chromosome ends lacking the subtelomeric region are usually delocalized from telomere clusters, but still remain at the nuclear periphery. This indicates that subtelomeric DNA is necessary for cluster formation but is not essential for peripheral positioning. Intriguingly, these truncated chromosomes have unusually long telomeric tracts (up to three times longer than average length), showing that TASs play a role in telomere length regulation. On these chromosomes, the newly formed telomere frequently extends from truncated genes leading, in some cases, to the transcription of telomeric DNA. The implications of both subtelomeric gene expression and nuclear architecture in the virulence of this serious human pathogen are discussed.


Current Opinion in Microbiology | 2001

Plasmodium telomeres: a pathogen's perspective.

Artur Scherf; Luisa M. Figueiredo; Lucio H. Freitas-Junior

New data on the organization of plasmodial telomeres has recently become available. Telomeres form clusters of four to seven heterologous chromosome ends at the nuclear periphery in asexual and sexual parasite stages. This subnuclear compartment promotes gene conversion between members of subtelomeric virulence factor genes in heterologous chromosomes resulting in diversity of antigenic and adhesive phenotypes. This has important implications for parasite survival.


Nature Reviews Microbiology | 2009

Epigenetic regulation in African trypanosomes: a new kid on the block

Luisa M. Figueiredo; George A.M. Cross; Christian J. Janzen

Epigenetic regulation is important in many facets of eukaryotic biology. Recent work has suggested that the basic mechanisms underlying epigenetic regulation extend to eukaryotic parasites. The identification of post-translational histone modifications and chromatin-modifying enzymes is beginning to reveal both common and novel functions for chromatin in these parasites. In this Review, we compare the role of epigenetics in African trypanosomes and humans in several biological processes. We discuss how the study of trypanosome chromatin might help us to better understand the evolution of epigenetic processes.


Nature | 2009

A yeast-endonuclease-generated DNA break induces antigenic switching in Trypanosoma brucei

Catharine Boothroyd; Oliver Dreesen; Tatyana Leonova; K. Ina Ly; Luisa M. Figueiredo; George A.M. Cross; F. Nina Papavasiliou

Trypanosoma brucei is the causative agent of African sleeping sickness in humans and one of the causes of nagana in cattle. This protozoan parasite evades the host immune system by antigenic variation, a periodic switching of its variant surface glycoprotein (VSG) coat. VSG switching is spontaneous and occurs at a rate of about 10-2–10-3 per population doubling in recent isolates from nature, but at a markedly reduced rate (10-5–10-6) in laboratory-adapted strains. VSG switching is thought to occur predominantly through gene conversion, a form of homologous recombination initiated by a DNA lesion that is used by other pathogens (for example, Candida albicans, Borrelia sp. and Neisseria gonorrhoeae) to generate surface protein diversity, and by B lymphocytes of the vertebrate immune system to generate antibody diversity. Very little is known about the molecular mechanism of VSG switching in T. brucei. Here we demonstrate that the introduction of a DNA double-stranded break (DSB) adjacent to the ∼70-base-pair (bp) repeats upstream of the transcribed VSG gene increases switching in vitro ∼250-fold, producing switched clones with a frequency and features similar to those generated early in an infection. We were also able to detect spontaneous DSBs within the 70-bp repeats upstream of the actively transcribed VSG gene, indicating that a DSB is a natural intermediate of VSG gene conversion and that VSG switching is the result of the resolution of this DSB by break-induced replication.


Eukaryotic Cell | 2010

Nucleosomes are depleted at the VSG expression site transcribed by RNA polymerase I in African trypanosomes.

Luisa M. Figueiredo; George A.M. Cross

ABSTRACT In most eukaryotes, RNA polymerase I (Pol I) exclusively transcribes long arrays of identical rRNA genes (ribosomal DNA [rDNA]). African trypanosomes have the unique property of using Pol I to also transcribe the variant surface glycoprotein VSG genes. VSGs are important virulence factors because their switching allows trypanosomes to escape the host immune system, a mechanism known as antigenic variation. Only one VSG is transcribed at a time from one of 15 bloodstream-form expression sites (BESs). Although it is clear that switching among BESs does not involve DNA rearrangements and that regulation is probably epigenetic, it remains unknown why BESs are transcribed by Pol I and what roles are played by chromatin structure and histone modifications. Using chromatin immunoprecipitation, micrococcal nuclease digestion, and chromatin fractionation, we observed that there are fewer nucleosomes at the active BES and that these are irregularly spaced compared to silent BESs. rDNA coding regions are also depleted of nucleosomes, relative to the rDNA spacer. In contrast, genes transcribed by Pol II are organized in a more compact, regularly spaced, nucleosomal structure. These observations provide new insight on antigenic variation by showing that chromatin remodeling is an intrinsic feature of BES regulation.


Cell Host & Microbe | 2016

Trypanosoma brucei Parasites Occupy and Functionally Adapt to the Adipose Tissue in Mice

Sandra Trindade; Filipa Rijo-Ferreira; Tânia Carvalho; Daniel Pinto-Neves; Fabien Guegan; Francisco Aresta-Branco; Fabio Bento; Simon A. Young; Andreia Pinto; Jan Van Den Abbeele; Ruy M. Ribeiro; Sergio Dias; Terry K. Smith; Luisa M. Figueiredo

Summary Trypanosoma brucei is an extracellular parasite that causes sleeping sickness. In mammalian hosts, trypanosomes are thought to exist in two major niches: early in infection, they populate the blood; later, they breach the blood-brain barrier. Working with a well-established mouse model, we discovered that adipose tissue constitutes a third major reservoir for T. brucei. Parasites from adipose tissue, here termed adipose tissue forms (ATFs), can replicate and were capable of infecting a naive animal. ATFs were transcriptionally distinct from bloodstream forms, and the genes upregulated included putative fatty acid β-oxidation enzymes. Consistent with this, ATFs were able to utilize exogenous myristate and form β-oxidation intermediates, suggesting that ATF parasites can use fatty acids as an external carbon source. These findings identify the adipose tissue as a niche for T. brucei during its mammalian life cycle and could potentially explain the weight loss associated with sleeping sickness.

Collaboration


Dive into the Luisa M. Figueiredo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Filipa Rijo-Ferreira

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francisco Aresta-Branco

Instituto de Medicina Molecular

View shared research outputs
Top Co-Authors

Avatar

Daniel Pinto-Neves

Instituto de Medicina Molecular

View shared research outputs
Top Co-Authors

Avatar

Sandra Trindade

Instituto de Medicina Molecular

View shared research outputs
Top Co-Authors

Avatar

Tânia Carvalho

Instituto de Medicina Molecular

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph S. Takahashi

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ana C. Pena

Instituto de Medicina Molecular

View shared research outputs
Researchain Logo
Decentralizing Knowledge