Luisa Mancuso
University of Cagliari
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Luisa Mancuso.
Neuropharmacology | 2002
Paolo Follesa; Patrizia Porcu; Cristiana Sogliano; M. Cinus; Francesca Biggio; Luisa Mancuso; Maria Cristina Mostallino; A.M. Paoletti; Robert H. Purdy; Giovanni Biggio; Alessandra Concas
The effects of oral contraceptives (OCs) on neurosteroid concentrations were evaluated in female rats and women. In rats, ethynylestradiol and levonorgestrel (0.030 and 0.125 mg, respectively, subcutaneously) administered daily for 6 weeks reduced the concentrations of pregnenolone (-41%) progesterone (-74%) and allopregnanolone (-79%) in the cerebral cortex; the plasma concentrations of these steroids were also reduced but by smaller extents. OC administration for 3 months also reduced the serum concentrations of pregnenolone, progesterone and allopregnanolone in women. Chronic administration of OCs in rats increased the abundance of gamma-aminobutyric acid type A (GABA(A)) receptor gamma 2L and gamma 2S subunit mRNAs and the relative protein in the cerebral cortex, while the amounts of various alpha and beta subunit mRNAs were unaffected. Ovariectomy did not modify the effect of OCs administration on the concentrations of neurosteroids in the rat cerebral cortex (but not in the plasma) as well as on the GABA(A) receptor gene expression, suggesting a direct effect of OCs in brain. Finally, rats treated with OCs exhibited an anxiety-like behavior in the elevated plus-maze test. These results indicate that long-term treatment with OCs induced a persistent reduction in the concentrations of pregnenolone, progesterone and its GABA(A) receptor-active metabolite, allopregnanolone, both in rats and women. In rats this effect was associated with a plastic adaptation of GABA(A) receptor gene expression in the rat cerebral cortex.
Molecular Brain Research | 2001
Paolo Follesa; Elisabetta Cagetti; Luisa Mancuso; Francesca Biggio; A Manca; Elisabetta Maciocco; Federico Massa; Maria Speranza Desole; Mario Carta; Fabio Busonero; Enrico Sanna; Giovanni Biggio
The effects of long-term exposure to, and subsequent withdrawal of, diazepam or imidazenil (full and partial agonists of the benzodiazepine receptor, respectively) on the abundance of GABA(A) receptor subunit mRNAs and peptides were investigated in rat cerebellar granule cells in culture. Exposure of cells to 10 microM diazepam for 5 days significantly reduced the amounts of alpha(1) and gamma(2) subunit mRNAs, and had no effect on the amount of alpha(4) mRNA. These effects were accompanied by a decrease in the levels of alpha(1) and gamma(2) protein and by a reduction in the efficacy of diazepam with regard to potentiation of GABA-evoked Cl- current. Similar long-term treatment with 10 microM imidazenil significantly reduced the abundance of only the gamma(2)S subunit mRNA and had no effect on GABA(A) receptor function. Withdrawal of diazepam or imidazenil induced a marked increase in the amount of alpha(4) mRNA; withdrawal of imidazenil also reduced the amounts of alpha(1) and gamma(2) mRNAs. In addition, withdrawal of diazepam or imidazenil was associated with a reduced ability of diazepam to potentiate GABA action. These data give new insights into the different molecular events related to GABA(A) receptor gene expression and function produced by chronic treatment and withdrawal of benzodiazepines with full or partial agonist properties.
Neuropharmacology | 2002
Paolo Follesa; Luisa Mancuso; Francesca Biggio; Elisabetta Cagetti; M Franco; G Trapani; Giovanni Biggio
The effects of long-term treatment with and subsequent withdrawal of the two hypnotic drugs zaleplon and zolpidem on the abundance of gamma-aminobutyric acid type A (GABA(A)) receptor subunit mRNAs in cultured rat cerebellar granule cells were investigated. Incubation of neurons with either drug at a concentration of 10 microM for 5 days did not significantly affect the amounts of mRNAs encoding the alpha(1), alpha(4), beta(1), beta(2), beta(3), gamma(2)L, or gamma(2)S subunits. As expected, similar treatment with the nonselective benzodiazepine diazepam resulted in a decrease in the abundance of alpha(1), beta(2), gamma(2)L, and gamma(2)S subunit mRNAs as well as an increase in that of the beta(1) subunit mRNA. Withdrawal of zaleplon or zolpidem, like that of diazepam, induced a marked increase in the amount of the alpha(4) subunit mRNA. In addition, discontinuation of treatment with either hypnotic drug resulted in a decrease in the amounts of alpha(1), beta(2), gamma(2)L, and gamma(2)S subunit mRNAs as well as an increase in that of the beta(1) subunit mRNA. These effects of zaleplon and zolpidem on GABA(A) receptor gene expression are consistent with the reduced tolerance liability of these drugs, compared with that of diazepam, as well as with their ability to induce both physical dependence and withdrawal syndrome.
European Neuropsychopharmacology | 2003
Giovanni Biggio; Laura Dazzi; Francesca Biggio; Luisa Mancuso; Giuseppe Talani; Fabio Busonero; Maria Cristina Mostallino; Enrico Sanna; Paolo Follesa
Here, we summarize recent data pertaining to the effects of GABA(A) receptor modulators on the receptor gene expression in order to elucidate the molecular mechanisms behind tolerance and dependence induced by these drugs. Drug selectivity and intrinsic activity seems to be important to evidence at the molecular level the GABA(A) receptor tolerance. On the contrary, we suggested that all drug tested are equally potentially prone to induce dependence. Our results demonstrate that long-lasting exposure of GABA(A) receptors to endogenous steroids, benzodiazepines and ethanol, as well as their withdrawal, induce marked effects on receptor structure and function. These results suggest the possible synergic action between endogenous steroids and these drugs in modulating the functional activity of specific neuronal populations. We report here that endogenous steroids may play a crucial role in the action of ethanol on dopaminergic neurons.
Toxicology in Vitro | 2011
M Scanu; Luisa Mancuso; Giacomo Cao
In vitro cytotoxicity tests are typically carried out with transformed, immortalized cell lines or primary cells. Immortalized cells are readily available and easily maintained, although they usually show anomalous behavior and phenotypes, which do not reflect the mechanisms observed in their normal homologous cells. Primary cells are indeed considered a better option as model systems for predicting toxicological behavior, although they are limited in quantity and suffer from batch-to-batch variation due to the need to isolate them freshly for each study. In particular, human Mesenchymal Stem Cells (hMSCs) have never been adopted in order to develop in vitro model systems for acute toxicity tests of chemicals. Therefore, the aim of this study was to verify the possibility of using hMSCs as an alternative method to estimate in vivo starting dose for acute toxicity. As suggested by ICCVAM, 12 reference chemicals were assessed in the present study and a Neutral Red Uptake assay was performed. It is shown for the first time that MSCs isolated from human bone marrow can be confidently used in this area of toxicology. MSCs represent a good promise for the development of in vitro human assays and could ultimately replace, improve or overtake current predictive models in toxicology.
Biomedical Materials | 2014
Luisa Mancuso; A Gualerzi; Federica Boschetti; Francesco Loy; Giacomo Cao
Atherosclerosis and its complications still represent the leading cause of death in the developed countries. While autologous blood vessels may be regarded as the best solution for peripheral and coronary bypass, they are unavailable in most patients. Even though tissue engineering techniques are often applied to the development of small-diameter vascular grafts, limiting factors of this approach are represented by the lack of essential extracellular matrix proteins and/or poor biomechanical properties of the scaffolds used. Along these lines, the aim of this study was to develop a decellularization protocol for ovine carotids to be used as suitable small-diameter vascular grafts. Samples were treated either with sodium dodecyl sulphate (SDS) or with Trypsin and Triton X-100; a final nuclease digestion was performed for both protocols. Morphological analyses demonstrate complete removal of nuclei and cellular components in treated vessels, also confirmed by significant reduction in wall thickness and DNA content. Essential extracellular matrix proteins such as collagen, elastin, and fibronectin are well preserved after decellularization. From a mechanical point of view, Trypsin and Triton X-100 treated arteries show elastic modules and compliance comparable to native carotids, whereas the use of SDS makes samples stiffer, with a significant decrease in the compliance mean value and an increase in longitudinal and circumferential Youngs modules. It is demonstrated that the treatment where Trypsin and Triton X-100 are combined guarantees complete decellularization of carotids, with no significant alteration of biomechanical and structural properties, thus preserving a suitable environment for adhesion, proliferation, and migration of cells.
Journal of Pharmacology and Experimental Therapeutics | 2002
Maria Paola Mascia; Francesca Biggio; Luisa Mancuso; Stefano Cabras; Pier Luigi Cocco; Giorgio Gorini; A Manca; Carla Marra; Robert H. Purdy; Paolo Follesa; Giovanni Biggio
The effects of ganaxolone, a synthetic analog of the endogenous neuroactive steroid allopregnanolone, on the function and expression of GABAA receptors were determined. Electrophysiological recordings demonstrated that ganaxolone potentiated with a potency and efficacy similar to those of allopregnanolone the Cl−currents evoked by GABA at recombinant human GABAAreceptors (comprising α1β2γ2L or α2β2γ2L subunit assemblies) expressed in Xenopus oocytes. Exposure of cultured rat cerebellar granule cells to 1 μM ganaxolone for 5 days had no effect on the abundance of mRNAs encoding the α1, α2, α3, α4, α5, γ2L, or γ2S subunits of the GABAA receptor. Withdrawal of ganaxolone after such long-term treatment, however, induced an increase in the abundance of α2, α4, and α5 subunit mRNAs and a decrease in the amounts of α1, γ2L, and γ2S subunit mRNAs. These changes were maximal 3 to 6 h after drug withdrawal and were reversible, being no longer apparent after 24 h. These results suggest that long-term exposure of cerebellar granule cells to ganaxolone does not affect the sensitivity of the GABAAreceptor to several positive modulators. Nevertheless, the reduction in the amounts of the α1 and γ2 subunit mRNAs together with the increase in the abundance of the α4 subunit mRNA induced by abrupt discontinuation of long-term treatment with ganaxolone suggest that withdrawal of this drug might result in a reduced response to classic benzodiazepines.
Cell Proliferation | 2009
Luisa Mancuso; M. I. Liuzzo; S. Fadda; Massimo Pisu; A. Cincotti; M Arras; E. Desogus; F. Piras; G. Piga; G. La Nasa; A. Concas; Giacomo Cao
Objectives: Stem cell therapies based on differentiation of adult or embryonic stem cells into specialized ones appear to be effective for treating several human diseases. This work addresses the mathematical simulation of proliferation kinetics of stem cells.
Toxicology Mechanisms and Methods | 2014
Luisa Mancuso; Giacomo Cao
Abstract Despite the growing interest in nanoparticles (NPs), standardized procedures for the evaluation of their toxicity have not been defined. The risk of human exposure is rapidly increasing and reliable toxicity test systems are urgently needed. In vitro methods are ideal in toxicology research because they can rapidly provide reproducible results while preventing the use of animals. Recently, a new test for acute toxicity based on the use of human bone marrow mesenchymal stem cells (hBMMSCs) has been developed and successfully tested in our laboratory following the Interagency Coordinating Committee on the Validation of Alternative Methods guidelines. Along these lines, the aim of this study is to evaluate the acute cytotoxicity of copper oxide (CuO) NPs using the new toxicity test based on hBMMSCs. Our results show that CuO NPs are much more toxic compared to micrometer ones. Specifically, CuO NP exposure exhibits a significant cytotoxicity at all the concentrations used, with an IC50 value of 2.5 ± 0.53 µg/ml. On the other hand, CuO microsized particle exposure exhibits a very low cytotoxicity at the same concentrations, with an IC50 value of 72.13 ± 16.2 µg/ml.
Cell Proliferation | 2010
Luisa Mancuso; M. I. Liuzzo; S. Fadda; Massimo Pisu; A. Cincotti; M Arras; G. La Nasa; Alessandro Concas; Giacomo Cao
This study focuses on analysis of in vitro cultures of chondrocytes from ovine articular cartilage. Isolated cells were seeded in Petri dishes, then expanded to confluence and phenotypically characterized by flow cytometry. The sigmoidal temporal profile of total counts was obtained by classic haemocytometry and corresponding cell size distributions were measured electronically using a Coulter Counter. A mathematical model recently proposed ( 1 ) was adopted for quantitative interpretation of these experimental data. The model is based on a 1‐D (that is, mass‐structured), single‐staged population balance approach capable of taking into account contact inhibition at confluence. The model’s parameters were determined by fitting measured total cell counts and size distributions. Model reliability was verified by predicting cell proliferation counts and corresponding size distributions at culture times longer than those used when tuning the model’s parameters. It was found that adoption of cell mass as the intrinsic characteristic of a growing chondrocyte population enables sigmoidal temporal profiles of total counts in the Petri dish, as well as cell size distributions at ‘balanced growth’, to be adequately predicted.