Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luise Erpenbeck is active.

Publication


Featured researches published by Luise Erpenbeck.


Blood | 2010

Deadly allies: the fatal interplay between platelets and metastasizing cancer cells

Luise Erpenbeck; Michael P. Schön

The general notion that functional platelets are important for successful hematogenous tumor metastasis has been inaugurated more than 4 decades ago and has since been corroborated in numerous experimental settings. Thorough preclinical investigations have, at least in part, clarified some specifics regarding the involvement of platelet adhesion receptors, such as thrombin receptors or integrins, in the metastasis cascade. Pivotal preclinical experiments have demonstrated that hematogenous tumor spread was dramatically diminished when platelets were depleted from the circulation or when functions of platelet surface receptors were inhibited pharmacologically or genetically. Such insight has inspired researchers to devise novel antitumoral therapies based on targeting platelet receptors. However, several mechanistic aspects underlying the impact of platelet receptors on tumor metastasis are not fully understood, and agents directed against platelet receptors have not yet found their way into the clinic. In addition, recent results suggesting that targeted inhibition of certain platelet surface receptors may even result in enhanced experimental tumor metastasis have demonstrated vividly that the role of platelets in tumor metastasis is more complex than has been anticipated previously. This review gives a comprehensive overview on the most important platelet receptors and their putative involvement in hematogenous metastasis of malignant tumors.


Journal of Investigative Dermatology | 2010

Inhibition of Platelet GPIbα and Promotion of Melanoma Metastasis

Luise Erpenbeck; Bernhard Nieswandt; Margarete Schön; Miroslava Pozgajova; Michael P. Schön

Platelet glycoprotein Ibalpha (GPIb alpha) is part of the receptor complex GPIb-V-IX, which has a critical role in hemostasis, especially through interactions with the subendothelial von Willebrand factor. As there is accumulating evidence for a contribution of platelet receptors to hematogenous tumor metastasis, GPIb alpha is an interesting molecule to study in this context. We have investigated the effect of GPIb alpha inhibition by monovalent Fab fragments on experimental pulmonary metastasis in a syngeneic mouse model using C57BL/6 mice and B16F10 melanoma cells. The early fate of green fluorescent protein (GFP)-transfected melanoma cells under GPIb alpha blockade was also assessed, as was the effect of GPIb alpha inhibition on pulmonary metastasis in mice lacking P-selectin. Surprisingly and, to our knowledge previously unreported, GPIb alpha inhibition led to a significant increase in pulmonary metastasis, and assessment of the early fate of circulating GFP-labeled B16F10 showed improved survival and pulmonary arrest of tumor cells shortly after GPIb alpha inhibition, indicating that inhibition of a platelet protein can, in some cases, promote metastasis of a malignant tumor. In contrast, GPIb alpha blockade in P-selectin-deficient mice had no enhancing effect on metastasis, suggesting the involvement of GPIb alpha in the initial, P-selectin-dependent steps of metastasis. These findings suggest that GPIb alpha contributes to the control of tumor metastasis, in addition to its role in hemostasis.


ACS Nano | 2013

Adhesion maturation of neutrophils on nanoscopically presented platelet glycoprotein Ibα.

Sebastian Kruss; Luise Erpenbeck; Katharina Amschler; Tabea A. Mundinger; Heike Boehm; Hans Joachim Helms; Tim Friede; Robert Keith Andrews; Michael P. Schön; Joachim P. Spatz

Neutrophilic granulocytes play a fundamental role in cardiovascular disease. They interact with platelet aggregates via the integrin Mac-1 and the platelet receptor glycoprotein Ibα (GPIbα). In vivo, GPIbα presentation is highly variable under different physiological and pathophysiological conditions. Here, we quantitatively determined the conditions for neutrophil adhesion in a biomimetic in vitro system, which allowed precise adjustment of the spacings between human GPIbα presented on the nanoscale from 60 to 200 nm. Unlike most conventional nanopatterning approaches, this method provided control over the local receptor density (spacing) rather than just the global receptor density. Under physiological flow conditions, neutrophils required a minimum spacing of GPIbα molecules to successfully adhere. In contrast, under low-flow conditions, neutrophils adhered on all tested spacings with subtle but nonlinear differences in cell response, including spreading area, spreading kinetics, adhesion maturation, and mobility. Surprisingly, Mac-1-dependent neutrophil adhesion was very robust to GPIbα density variations up to 1 order of magnitude. This complex response map indicates that neutrophil adhesion under flow and adhesion maturation are differentially regulated by GPIbα density. Our study reveals how Mac-1/GPIbα interactions govern cell adhesion and how neutrophils process the number of available surface receptors on the nanoscale. In the future, such in vitro studies can be useful to determine optimum therapeutic ranges for targeting this interaction.


Journal of Investigative Dermatology | 2010

NF-κB Inhibition through Proteasome Inhibition or IKKβ Blockade Increases the Susceptibility of Melanoma Cells to Cytostatic Treatment through Distinct Pathways

Katharina Amschler; Michael P. Schön; Nadin Pletz; Katrin Wallbrecht; Luise Erpenbeck; Margarete Schön

Metastasized melanoma is almost universally resistant to chemotherapy. Given that constitutive or drug-induced upregulation of NF-kappaB activity is associated with this chemoresistance, NF-kappaB inhibition may increase the susceptibility to antitumoral therapy. On the cellular level, two principles of NF-kappaB inhibition, proteasome inhibition by bortezomib and IkappaB kinase-beta (IKKbeta) inhibition by the kinase inhibitor of NF-kappaB-1 (KINK-1), significantly increased the antitumoral efficacy of camptothecin. When combined with camptothecin, either of the two NF-kappaB-inhibiting principles synergistically influenced progression-related in vitro functions, including cell growth, apoptosis, and invasion through an artificial basement membrane. In addition, when C57BL/6 mice were intravenously injected with B16F10 melanoma cells, the combination of cytostatic treatment with either of the NF-kappaB-inhibiting compounds revealed significantly reduced pulmonary metastasis compared to either treatment alone. However, on the molecular level, nuclear translocation of p65, cell cycle analysis, and expression of NF-kappaB-dependent gene products disclosed distinctly different molecular mechanisms, resulting in the same functional effect. That proteasome inhibition and IKKbeta inhibition affect distinct molecular pathways downstream of NF-kappaB, both leading to increased chemosensitivity, is previously unreported. Thus, it is conceivable that switching the two principles of NF-kappaB inhibition, once resistance to one of the agents occurs, will improve future treatment regimens.


Experimental Dermatology | 2017

Sexy again: The renaissance of neutrophils in psoriasis.

Michael P. Schön; Sigrid M. C. Broekaert; Luise Erpenbeck

Notwithstanding their prominent presence in psoriatic skin, the functional role of neutrophilic granulocytes still remains somewhat enigmatic. Sparked by exciting scientific discoveries regarding neutrophil functions within the last years, the interest in these short‐lived cells of the innate immune system has been boosted recently. While it had been known for some time that neutrophils produce and respond to a number of inflammatory mediators, recent research has linked neutrophils with the pathogenic functions of IL‐17, possibly in conjunction with the formation of NETs (neutrophil extracellular traps). Antipsoriatic therapies exert their effects, at least in part, through interference with neutrophils. Neutrophils also appear to connect psoriasis with comorbid diseases. However, directly tampering with neutrophil functions is not trivial as evinced by the failure of therapeutic approaches targeting redundantly regulated cellular communication networks. It has also become apparent that neutrophils link important pathogenic functions of the innate and the adaptive immune system and that they are intricately involved in regulatory networks underlying the pathophysiology of psoriasis. In order to advocate intensified research into the role of this interesting cell population, we here highlight some features of neutrophils and put them into perspective with our current view of the pathophysiology of psoriasis.


Case Reports in Oncology | 2013

Oxaliplatin-Induced Leukocytoclastic Vasculitis under Adjuvant Chemotherapy for Colorectal Cancer: Two Cases of a Rare Adverse Event

Henriette Quack; Luise Erpenbeck; Hendrik A. Wolff; Thilo Sprenger; Cornelia S. Seitz; Michael P. Schön; Steffen Neumann; Kathrin Stanek; B. Michael Ghadimi; Beate Michels; Peter Middel; Inga-Marie Schaefer; Torsten Liersch; Lena Conradi

Leukocytoclastic vasculitis is a multicausal systemic inflammatory disease of the small vessels, histologically characterized by inflammation and deposition of both nuclear debris and fibrin in dermal postcapillary venules. The clinical picture typically involves palpable purpura of the lower legs and may be associated with general symptoms such as fatigue, arthralgia and fever. Involvement of the internal organs, most notably the kidneys, the central nervous system or the eyes, is possible and determines the prognosis. Oxaliplatin-induced leukocytoclastic vasculitis is a very rare event that limits treatment options in affected patients. We report 2 patients who developed the condition under chemotherapy for advanced rectal and metastatic colon carcinoma, respectively; a termination of the therapy was therefore necessary. While current therapies for colorectal cancer include the combination of multimodal treatment with new and targeted agents, rare and unusual side effects elicited by established agents also need to be taken into account for the clinical management.


Nature Communications | 2018

Chromatin swelling drives neutrophil extracellular trap release

Elsa Neubert; Daniel Meyer; Francesco Rocca; Gökhan Günay; Anja Kwaczala-Tessmann; Julia Grandke; Susanne Senger-Sander; Claudia Geisler; Alexander Egner; Michael P. Schön; Luise Erpenbeck; Sebastian Kruss

Neutrophilic granulocytes are able to release their own DNA as neutrophil extracellular traps (NETs) to capture and eliminate pathogens. DNA expulsion (NETosis) has also been documented for other cells and organisms, thus highlighting the evolutionary conservation of this process. Moreover, dysregulated NETosis has been implicated in many diseases, including cancer and inflammatory disorders. During NETosis, neutrophils undergo dynamic and dramatic alterations of their cellular as well as sub-cellular morphology whose biophysical basis is poorly understood. Here we investigate NETosis in real-time on the single-cell level using fluorescence and atomic force microscopy. Our results show that NETosis is highly organized into three distinct phases with a clear point of no return defined by chromatin status. Entropic chromatin swelling is the major physical driving force that causes cell morphology changes and the rupture of both nuclear envelope and plasma membrane. Through its material properties, chromatin thus directly orchestrates this complex biological process.Neutrophilic granulocytes release their own DNA (NETosis) as neutrophil extracellular traps to capture pathogens. Here, the authors use time-resolved fluorescence and atomic force microscopy and reveal that NETosis is highly organized into three distinct phases with a clear point of no return defined by chromatin status.


Journal of Investigative Dermatology | 2018

Morphological Plasticity of Human Melanoma Cells is Determined by Nanoscopic Patterns of E- and N-Cadherin Interactions

Katharina Amschler; Ilkay Beyazpinar; Luise Erpenbeck; Sebastian Kruss; Joachim P. Spatz; Michael P. Schön

Loss of E-cadherin and concomitant upregulation of N-cadherin is known as the cadherin switch, and has been implicated in melanoma progression. Mechanistically, homophilic ligation of N-cadherin-expressing melanoma cells with N-cadherin presented within the microenvironment is thought to facilitate invasion. However, the biophysical aspects governing molecular specificity and function of such interactions remain unclear. By using precisely defined nano-patterns of N- or E-cadherin (with densities tunable by more than one order of magnitude from 78 to 1,128 ligands/μm2), we analyzed adhesion and spreading of six different human melanoma cell lines with distinct constitutive cadherin expression patterns. Cadherin-mediated homophilic cell interactions (N/N and E/E) with cadherin-functionalized nano-matrices revealed an unexpected functional dichotomy inasmuch as melanoma cell adhesion was cadherin density-dependent, while spreading and lamellipodia formation were independent of cadherin density. Surprisingly, E-cadherin-expressing melanoma cells also interacted with N-cadherin-presenting nano-matrices, suggesting heterophilic (N/E) interactions. However, cellular spreading in these cases occurred only at high densities of N-cadherin (i.e., >285 ligands/μm2). Overall, our approach using nano-patterned biomimetic surfaces provides a platform to further refine the roles of cadherins in tumor cell behavior and it revealed an intriguing flexibility of mutually compensating N- and E-cadherin interactions relevant for melanoma progression.


Frontiers in Immunology | 2018

The Interleukin-23/Interleukin-17 Axis Links Adaptive and Innate Immunity in Psoriasis

Michael P. Schön; Luise Erpenbeck

Research into the pathophysiology of psoriasis has shed light onto many fascinating immunological interactions and underlying genetic constellations. Most prominent among these is the crosstalk between components of the innate and the adaptive immune system and the crucial role of interleukins (IL)-23 and -17 within this network. While it is clear that IL-23 drives and maintains the differentiation of Th17 lymphocytes, many aspects of the regulation of IL-23 and IL-17 are not quite as straightforward and have been unraveled only recently. For example, we know now that Th17 cells are not the only source of IL-17 but that cells of the innate immune system also produce considerable amounts of this central effector cytokine. In addition, there is IL-23-independent production of IL-17. Besides other innate immune cells, neutrophilic granulocytes prominently contribute to IL-17-related immune regulations in psoriasis, and it appears that they employ several mechanisms including the formation of neutrophil extracellular traps. Here, we strive to put the central role of the IL-23/IL-17 axis into perspective within the crosstalk between components of the innate and the adaptive immune system. Our aim is to better understand the complex immune regulation in psoriasis, a disorder that has become a model disease for chronic inflammation.


ACS Applied Materials & Interfaces | 2018

Control of Integrin Affinity by Confining RGD Peptides on Fluorescent Carbon Nanotubes

Elena Polo; Tadeusz T. Nitka; Elsa Neubert; Luise Erpenbeck; Lela Vuković; Sebastian Kruss

Integrins are transmembrane receptors that mediate cell-adhesion, signaling cascades and platelet-mediated blood clotting. Most integrins bind to the common short peptide Arg-Gly-Asp (RGD). The conformational freedom of the RGD motif determines how strong and to which integrins it binds. Here, we present a novel approach to tune binding constants by confining RGD peptide motifs via noncovalent adsorption of single-stranded DNA (ssDNA) anchors onto single-walled carbon nanotubes (SWCNTs). Semiconducting SWCNTs display fluorescence in the near-infrared (nIR) region and are versatile fluorescent building blocks for imaging and biosensing. The basic idea of this approach is that the DNA adsorbed on the SWCNT surface determines the conformational freedom of the RGD motif and affects binding affinities. The RGD motif was conjugated to different ssDNA sequences in both linear ssDNA-RGD and bridged ssDNA-RGD-ssDNA geometries. Molecular dynamics (MD) simulations show that the RGD motif in all the synthesized systems is mostly exposed to solvent and thus available for binding, but its flexibility depends on the exact geometry. The affinity for the human platelet integrin αIIbβ3 could be modulated up to 15-fold by changing the ssDNA sequence. IC50 values varied from 309 nM for (C)20-RGD/SWCNT hybrids to 29 nM for (GT)15-RGD/SWCNT hybrids. When immobilized onto surface adhesion of epithelial cells increased 6-fold for (GT)15-RGD/SWCNTs. (GT)15-RGD/SWCNTs also increased the number of adhering human platelets by a factor of 4.8. Additionally, αIIbβ3 integrins on human platelets were labeled in the nIR by incubating them with these ssDNA-peptide/SWCNT hybrids. In summary, we show that ssDNA-peptide hybrid structures noncovalently adsorb onto SWCNTs and serve as recognition units for cell surface receptors such as integrins. The DNA sequence affects the overall RGD affinity, which is a versatile and straightforward approach to tune binding affinities. In combination with the nIR fluorescence properties of SWCNTs, these new hybrid materials promise many applications in integrin targeting and bioimaging.

Collaboration


Dive into the Luise Erpenbeck's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sebastian Kruss

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elsa Neubert

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge