Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luitgard Graul-Neumann is active.

Publication


Featured researches published by Luitgard Graul-Neumann.


Nature Genetics | 2012

Mutations in the RNA exosome component gene EXOSC3 cause pontocerebellar hypoplasia and spinal motor neuron degeneration

Jijun Wan; Michael Yourshaw; Hafsa Mamsa; Sabine Rudnik-Schöneborn; Manoj P. Menezes; Ji Eun Hong; Derek W Leong; Jan Senderek; Michael S Salman; David Chitayat; Pavel Seeman; Arpad von Moers; Luitgard Graul-Neumann; Andrew J. Kornberg; Manuel Castro-Gago; María-Jesús Sobrido; Masafumi Sanefuji; Perry B. Shieh; Noriko Salamon; Ronald C. Kim; Harry V. Vinters; Zugen Chen; Klaus Zerres; Monique M. Ryan; Stanley F. Nelson; Joanna C. Jen

RNA exosomes are multi-subunit complexes conserved throughout evolution and are emerging as the major cellular machinery for processing, surveillance and turnover of a diverse spectrum of coding and noncoding RNA substrates essential for viability. By exome sequencing, we discovered recessive mutations in EXOSC3 (encoding exosome component 3) in four siblings with infantile spinal motor neuron disease, cerebellar atrophy, progressive microcephaly and profound global developmental delay, consistent with pontocerebellar hypoplasia type 1 (PCH1; MIM 607596). We identified mutations in EXOSC3 in an additional 8 of 12 families with PCH1. Morpholino knockdown of exosc3 in zebrafish embryos caused embryonic maldevelopment, resulting in small brain size and poor motility, reminiscent of human clinical features, and these defects were largely rescued by co-injection with wild-type but not mutant exosc3 mRNA. These findings represent the first example of an RNA exosome core component gene that is responsible for a human disease and further implicate dysregulation of RNA processing in cerebellar and spinal motor neuron maldevelopment and degeneration.


Science Translational Medicine | 2014

Effective diagnosis of genetic disease by computational phenotype analysis of the disease-associated genome

Tomasz Zemojtel; Sebastian Köhler; Luisa Mackenroth; Marten Jäger; Jochen Hecht; Peter Krawitz; Luitgard Graul-Neumann; Sandra C. Doelken; Nadja Ehmke; Malte Spielmann; Nancy Christine Øien; Michal R. Schweiger; Ulrike Krüger; Götz Frommer; Björn Fischer; Uwe Kornak; Ricarda Flöttmann; Amin Ardeshirdavani; Yves Moreau; Suzanna E. Lewis; Melissa Haendel; Damian Smedley; Denise Horn; Stefan Mundlos; Peter N. Robinson

Patients with genetic disease of unknown causes can be rapidly diagnosed by bioinformatic analysis of disease-associated DNA sequences and phenotype. Efficient Diagnosis of Genetic Disease We know which genes are mutated in almost 3000 inherited human diseases and have good descriptions of how these mutations affect the human phenotype. Now, Zemojtel et al. have coupled this knowledge with rapid sequencing of these genes in a group of 40 patients with undiagnosed genetic diseases. Bioinformatic matching of the patients’ clinical characteristics and their disease gene sequences to databases of current genetic and phenotype knowledge enabled the authors to successfully diagnose almost 30% of the patients. The process required only about 2 hours of a geneticists’ time. Zemojtel et al. have made their tools available to the community, enabling a fast straightforward process by which clinicians and patients can easily identify the genetic basis of inherited disease in certain people. Less than half of patients with suspected genetic disease receive a molecular diagnosis. We have therefore integrated next-generation sequencing (NGS), bioinformatics, and clinical data into an effective diagnostic workflow. We used variants in the 2741 established Mendelian disease genes [the disease-associated genome (DAG)] to develop a targeted enrichment DAG panel (7.1 Mb), which achieves a coverage of 20-fold or better for 98% of bases. Furthermore, we established a computational method [Phenotypic Interpretation of eXomes (PhenIX)] that evaluated and ranked variants based on pathogenicity and semantic similarity of patients’ phenotype described by Human Phenotype Ontology (HPO) terms to those of 3991 Mendelian diseases. In computer simulations, ranking genes based on the variant score put the true gene in first place less than 5% of the time; PhenIX placed the correct gene in first place more than 86% of the time. In a retrospective test of PhenIX on 52 patients with previously identified mutations and known diagnoses, the correct gene achieved a mean rank of 2.1. In a prospective study on 40 individuals without a diagnosis, PhenIX analysis enabled a diagnosis in 11 cases (28%, at a mean rank of 2.4). Thus, the NGS of the DAG followed by phenotype-driven bioinformatic analysis allows quick and effective differential diagnostics in medical genetics.


Journal of Medical Genetics | 2013

Exome sequencing identifies DYNC2H1 mutations as a common cause of asphyxiating thoracic dystrophy (Jeune syndrome) without major polydactyly, renal or retinal involvement

Miriam Schmidts; Heleen H. Arts; Ernie M.H.F. Bongers; Zhimin Yap; Machteld M. Oud; Dinu Antony; Lonneke Duijkers; Richard D. Emes; Jim Stalker; Jan-Bart L Yntema; Vincent Plagnol; Alexander Hoischen; Christian Gilissen; Elisabeth Forsythe; Ekkehart Lausch; Joris A. Veltman; Nel Roeleveld; Andrea Superti-Furga; Anna Kutkowska-Kazmierczak; Erik-Jan Kamsteeg; Nursel Elcioglu; Merel C van Maarle; Luitgard Graul-Neumann; Koenraad Devriendt; Sarah F. Smithson; Diana Wellesley; Nienke E. Verbeek; Raoul C. M. Hennekam; Hülya Kayserili; Peter J. Scambler

Background Jeune asphyxiating thoracic dystrophy (JATD) is a rare, often lethal, recessively inherited chondrodysplasia characterised by shortened ribs and long bones, sometimes accompanied by polydactyly, and renal, liver and retinal disease. Mutations in intraflagellar transport (IFT) genes cause JATD, including the IFT dynein-2 motor subunit gene DYNC2H1. Genetic heterogeneity and the large DYNC2H1 gene size have hindered JATD genetic diagnosis. Aims and methods To determine the contribution to JATD we screened DYNC2H1 in 71 JATD patients JATD patients combining SNP mapping, Sanger sequencing and exome sequencing. Results and conclusions We detected 34 DYNC2H1 mutations in 29/71 (41%) patients from 19/57 families (33%), showing it as a major cause of JATD especially in Northern European patients. This included 13 early protein termination mutations (nonsense/frameshift, deletion, splice site) but no patients carried these in combination, suggesting the human phenotype is at least partly hypomorphic. In addition, 21 missense mutations were distributed across DYNC2H1 and these showed some clustering to functional domains, especially the ATP motor domain. DYNC2H1 patients largely lacked significant extra-skeletal involvement, demonstrating an important genotype–phenotype correlation in JATD. Significant variability exists in the course and severity of the thoracic phenotype, both between affected siblings with identical DYNC2H1 alleles and among individuals with different alleles, which suggests the DYNC2H1 phenotype might be subject to modifier alleles, non-genetic or epigenetic factors. Assessment of fibroblasts from patients showed accumulation of anterograde IFT proteins in the ciliary tips, confirming defects similar to patients with other retrograde IFT machinery mutations, which may be of undervalued potential for diagnostic purposes.


Muscle & Nerve | 2010

Digital necroses and vascular thrombosis in severe spinal muscular atrophy

Sabine Rudnik-Schöneborn; Silke Vogelgesang; Sven Armbrust; Luitgard Graul-Neumann; Christoph Fusch; Klaus Zerres

Infantile spinal muscular atrophy (SMA) caused by homozygous SMN1 gene deletions/mutations is characterized by neuronal loss and axonopathy of motor neurons. We report two unrelated patients with severe SMA type I who had only one SMN2 copy and developed ulcerations and necroses of the fingers and toes. Sural nerve biopsy was normal in patient 1, whose affected skin displayed necroses and thrombotic occlusions of small vessels. Corresponding to a mouse model and other patients with similar findings, we believe that severe survival motor neuron (SMN) deficiency may present as vasculopathy. Muscle Nerve 42: 144–147, 2010


Neurology | 2013

Pontocerebellar hypoplasia type 1 Clinical spectrum and relevance of EXOSC3 mutations

Sabine Rudnik-Schöneborn; Jan Senderek; Joanna C. Jen; Gunnar Houge; Pavel Seeman; Alena Puchmajerova; Luitgard Graul-Neumann; Ulrich Seidel; Rudolf Korinthenberg; Janbernd Kirschner; Jürgen Seeger; Monique M. Ryan; Francesco Muntoni; Maja Steinlin; László Sztriha; J. Colomer; Christoph Hübner; Knut Brockmann; Lionel Van Maldergem; Manuel Schiff; Andreas Holzinger; Peter G. Barth; William Reardon; Michael Yourshaw; Stanley F. Nelson; Thomas Eggermann; Klaus Zerres

Objectives: Pontocerebellar hypoplasia with spinal muscular atrophy, also known as PCH1, is a group of autosomal recessive disorders characterized by generalized muscle weakness and global developmental delay commonly resulting in early death. Gene defects had been discovered only in single patients until the recent identification of EXOSC3 mutations in several families with relatively mild course of PCH1. We aim to genetically stratify subjects in a large and well-defined cohort to define the clinical spectrum and genotype–phenotype correlation. Methods: We documented clinical, neuroimaging, and morphologic data of 37 subjects from 27 families with PCH1. EXOSC3 gene sequencing was performed in 27 unrelated index patients of mixed ethnicity. Results: Biallelic mutations in EXOSC3 were detected in 10 of 27 families (37%). The most common mutation among all ethnic groups was c.395A>C, p.D132A, responsible for 11 (55%) of the 20 mutated alleles and ancestral in origin. The mutation-positive subjects typically presented with normal pregnancy, normal birth measurements, and relative preservation of brainstem and cortical structures. Psychomotor retardation was profound in all patients but lifespan was variable, with 3 subjects surviving beyond the late teens. Abnormal oculomotor function was commonly observed in patients surviving beyond the first year. Major clinical features previously reported in PCH1, including intrauterine abnormalities, postnatal hypoventilation and feeding difficulties, joint contractures, and neonatal death, were rarely observed in mutation-positive infants but were typical among the mutation-negative subjects. Conclusion: EXOSC3 mutations account for 30%–40% of patients with PCH1 with variability in survival and clinical severity that is correlated with the genotype.


European Journal of Pediatrics | 2008

A further case of the recurrent 15q24 microdeletion syndrome, detected by array CGH.

Eva Klopocki; Luitgard Graul-Neumann; Ulrike Grieben; Holger Tönnies; Hans-Hilger Ropers; Denise Horn; Stefan Mundlos; Reinhard Ullmann

We report on a 10-year-old patient with developmental delay, craniofacial dysmorphism, digital and genital abnormalities. In addition, muscular hypotonia, strabism, and splenomegaly were observed; inguinal and umbilical hernias were surgically corrected. Mucopolysaccharidoses and CDG syndromes could not be found. Chromosome analysis revealed a normal male karyotype (46,XY). A more detailed investigation of the patient’s genomic DNA by microarray-based comparative genomic hybridization (array CGH) detected an interstitial 3.7 Mb deletion ranging from 15q24.1 to 15q24.3 which was shown to be de novo. Interstitial deletions involving 15q24 are rare. Sharp et al. (Hum Mol Genet 16:567–572, 2007) recently characterized a recurrent 15q24 microdeletion syndrome with breakpoints in regions of segmental duplications. The de novo microdeletion described here colocalizes with the minimal deletion region of the 15q24 microdeletion syndrome. The distinct clinical phenotype associated with this novel microdeletion syndrome is similar to the phenotype of our patient with respect to specific facial features, developmental delay, microcephaly, digital abnormalities, and genital abnormalities in males. We present a genotype–phenotype correlation and comparison with patients from the literature.


Nature Genetics | 2015

Transcriptional regulator PRDM12 is essential for human pain perception

Ya Chun Chen; Michaela Auer-Grumbach; Shinya Matsukawa; Manuela Zitzelsberger; Andreas C. Themistocleous; Tim M. Strom; Chrysanthi Samara; Adrian W Moore; Lily Ting-Yin Cho; Gareth T. Young; Caecilia Weiss; Maria Schabhüttl; Rolf Stucka; Annina B. Schmid; Yesim Parman; Luitgard Graul-Neumann; Wolfram Heinritz; Eberhard Passarge; Rosemarie Watson; Jens Michael Hertz; Ute Moog; Manuela Baumgartner; Enza Maria Valente; Diego Pereira; Carlos Martín Restrepo; Istvan Katona; Marina Dusl; Claudia Stendel; Thomas Wieland; Fay Stafford

Pain perception has evolved as a warning mechanism to alert organisms to tissue damage and dangerous environments. In humans, however, undesirable, excessive or chronic pain is a common and major societal burden for which available medical treatments are currently suboptimal. New therapeutic options have recently been derived from studies of individuals with congenital insensitivity to pain (CIP). Here we identified 10 different homozygous mutations in PRDM12 (encoding PRDI-BF1 and RIZ homology domain-containing protein 12) in subjects with CIP from 11 families. Prdm proteins are a family of epigenetic regulators that control neural specification and neurogenesis. We determined that Prdm12 is expressed in nociceptors and their progenitors and participates in the development of sensory neurons in Xenopus embryos. Moreover, CIP-associated mutants abrogate the histone-modifying potential associated with wild-type Prdm12. Prdm12 emerges as a key factor in the orchestration of sensory neurogenesis and may hold promise as a target for new pain therapeutics.


European Journal of Human Genetics | 2009

A large-scale mutation search reveals genetic heterogeneity in 3M syndrome

Céline Huber; Anee-Lise Delezoide; Fabien Guimiot; Clarisse Baumann; Valérie Malan; Martine Le Merrer; Daniela Bezerra Da Silva; Dominique Bonneau; Pierre G. Chatelain; Carol Chu; Robin Clark; Helen Cox; Patrick Edery; Thomas Edouard; Virginia Fano; Kate Gibson; Gabriele Gillessen-Kaesbach; Maria-Luisa Giovannucci-Uzielli; Luitgard Graul-Neumann; Johana-Maria van Hagen; Liselot van Hest; Dafne Horovitz; Judith Melki; Carl-Joachim Partsch; H. Plauchu; Anna Rajab; Massimiliano Rossi; David Sillence; Elisabeth Steichen-Gersdorf; Helen Stewart

The 3M syndrome is a rare autosomal recessive disorder recently ascribed to mutations in the CUL7 gene and characterized by severe pre- and postnatal growth retardation. Studying a series of 33 novel cases of 3M syndrome, we have identified deleterious CUL7 mutations in 23/33 patients, including 19 novel mutations and one paternal isodisomy of chromosome 6 encompassing a CUL7 mutation. Lack of mutations in 10/33 cases and exclusion of the CUL7 locus on chromosome 6p21.1 in six consanguineous families strongly support the genetic heterogeneity of the 3M syndrome.


American Journal of Medical Genetics Part A | 2008

Highly variable cutis laxa resulting from a dominant splicing mutation of the elastin gene

Luitgard Graul-Neumann; Ingrid Hausser; Maximilian Essayie; Anita Rauch; Cornelia Kraus

Autosomal dominant congenital cutis laxa (ADCL) is genetically heterogeneous and shows clinical variability. Only seven ADCL families with mutations in the elastin gene (ELN) have been described previously. We present morphological and molecular genetic studies in a cutis laxa kindred with a previously undescribed highly variable phenotype caused by a novel ELN mutation c.1621 C > T. The proband presented with severe cutis laxa, severe congenital lung disease previously undescribed in ADCL and pulmonary artery disease, which is often seen in ARCL but rare in ADCL. He also developed infantile spasms (OMIM 308350; West syndrome), which we consider a coincidental association although recessive cutis laxa or even digenic inheritance cannot be excluded. Electron microscopy of the probands dermis revealed only mild rarefication of elastic fibers (in contrast to most recessive cutis laxa types). Apart from mild elastic fiber fragmentation, dermal morphology of the probands father was within normal range. Molecular analysis of the ELN gene using genomic DNA from blood and RNA from cultured skin fibroblasts indicated a novel splice site mutation in the proband and his clinically healthy father. Analysis of ELN expression in fibroblasts provided evidence for a dominant‐negative effect in the child, while due to an unknown mechanism, the father showed haploinsufficiency which might explain the significant clinical variability.


Circulation-cardiovascular Genetics | 2015

Haploinsufficiency of the NOTCH1 Receptor as a Cause of Adams–Oliver Syndrome With Variable Cardiac Anomalies

Laura Southgate; Maja Sukalo; Anastasios S.V. Karountzos; Edward J. Taylor; Claire S. Collinson; Deborah Ruddy; Katie Snape; Bruno Dallapiccola; John Tolmie; Shelagh Joss; Francesco Brancati; Maria Cristina Digilio; Luitgard Graul-Neumann; Leonardo Salviati; Wiltrud Coerdt; Emmanuel Jacquemin; Wim Wuyts; Martin Zenker; Rajiv D. Machado; Richard C. Trembath

Background—Adams–Oliver syndrome (AOS) is a rare disorder characterized by congenital limb defects and scalp cutis aplasia. In a proportion of cases, notable cardiac involvement is also apparent. Despite recent advances in the understanding of the genetic basis of AOS, for the majority of affected subjects, the underlying molecular defect remains unresolved. This study aimed to identify novel genetic determinants of AOS. Methods and Results—Whole-exome sequencing was performed for 12 probands, each with a clinical diagnosis of AOS. Analyses led to the identification of novel heterozygous truncating NOTCH1 mutations (c.1649dupA and c.6049_6050delTC) in 2 kindreds in which AOS was segregating as an autosomal dominant trait. Screening a cohort of 52 unrelated AOS subjects, we detected 8 additional unique NOTCH1 mutations, including 3 de novo amino acid substitutions, all within the ligand-binding domain. Congenital heart anomalies were noted in 47% (8/17) of NOTCH1-positive probands and affected family members. In leukocyte-derived RNA from subjects harboring NOTCH1 extracellular domain mutations, we observed significant reduction of NOTCH1 expression, suggesting instability and degradation of mutant mRNA transcripts by the cellular machinery. Transient transfection of mutagenized NOTCH1 missense constructs also revealed significant reduction in gene expression. Mutant NOTCH1 expression was associated with downregulation of the Notch target genes HEY1 and HES1, indicating that NOTCH1-related AOS arises through dysregulation of the Notch signaling pathway. Conclusions—These findings highlight a key role for NOTCH1 across a range of developmental anomalies that include cardiac defects and implicate NOTCH1 haploinsufficiency as a likely molecular mechanism for this group of disorders.

Collaboration


Dive into the Luitgard Graul-Neumann's collaboration.

Top Co-Authors

Avatar

Eva Klopocki

University of Würzburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eberhard Passarge

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christiane Zweier

University of Erlangen-Nuremberg

View shared research outputs
Researchain Logo
Decentralizing Knowledge