Luiz Affonso Guedes
Federal University of Rio Grande do Norte
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Luiz Affonso Guedes.
Sensors | 2012
Ivanovitch M. D. Silva; Luiz Affonso Guedes; Paulo Portugal; Francisco Vasques
Wireless Sensor Networks (WSN) currently represent the best candidate to be adopted as the communication solution for the last mile connection in process control and monitoring applications in industrial environments. Most of these applications have stringent dependability (reliability and availability) requirements, as a system failure may result in economic losses, put people in danger or lead to environmental damages. Among the different type of faults that can lead to a system failure, permanent faults on network devices have a major impact. They can hamper communications over long periods of time and consequently disturb, or even disable, control algorithms. The lack of a structured approach enabling the evaluation of permanent faults, prevents system designers to optimize decisions that minimize these occurrences. In this work we propose a methodology based on an automatic generation of a fault tree to evaluate the reliability and availability of Wireless Sensor Networks, when permanent faults occur on network devices. The proposal supports any topology, different levels of redundancy, network reconfigurations, criticality of devices and arbitrary failure conditions. The proposed methodology is particularly suitable for the design and validation of Wireless Sensor Networks when trying to optimize its reliability and availability requirements.
Sensors | 2010
Daniel G. Costa; Luiz Affonso Guedes
Wireless sensor networks typically consist of a great number of tiny low-cost electronic devices with limited sensing and computing capabilities which cooperatively communicate to collect some kind of information from an area of interest. When wireless nodes of such networks are equipped with a low-power camera, visual data can be retrieved, facilitating a new set of novel applications. The nature of video-based wireless sensor networks demands new algorithms and solutions, since traditional wireless sensor networks approaches are not feasible or even efficient for that specialized communication scenario. The coverage problem is a crucial issue of wireless sensor networks, requiring specific solutions when video-based sensors are employed. In this paper, it is surveyed the state of the art of this particular issue, regarding strategies, algorithms and general computational solutions. Open research areas are also discussed, envisaging promising investigation considering coverage in video-based wireless sensor networks.
Sensors | 2011
Daniel G. Costa; Luiz Affonso Guedes
Visual sensor networks (VSNs) comprised of battery-operated electronic devices endowed with low-resolution cameras have expanded the applicability of a series of monitoring applications. Those types of sensors are interconnected by ad hoc error-prone wireless links, imposing stringent restrictions on available bandwidth, end-to-end delay and packet error rates. In such context, multimedia coding is required for data compression and error-resilience, also ensuring energy preservation over the path(s) toward the sink and improving the end-to-end perceptual quality of the received media. Cross-layer optimization may enhance the expected efficiency of VSNs applications, disrupting the conventional information flow of the protocol layers. When the inner characteristics of the multimedia coding techniques are exploited by cross-layer protocols and architectures, higher efficiency may be obtained in visual sensor networks. This paper surveys recent research on multimedia-based cross-layer optimization, presenting the proposed strategies and mechanisms for transmission rate adjustment, congestion control, multipath selection, energy preservation and error recovery. We note that many multimedia-based cross-layer optimization solutions have been proposed in recent years, each one bringing a wealth of contributions to visual sensor networks.
Computers & Electrical Engineering | 2013
Ivanovitch M. D. Silva; Rafael Magdanelo Leandro; Daniel A. Macedo; Luiz Affonso Guedes
The Internet of Things (IoT) is a promising networking paradigm which immerses objects (cell phones, goods, watches, sensing motes, TVs, etc.) in a worldwide connection. Despite its high degree of applicability, the IoT faces some challenges. One of the most challenging problems is its dependability (reliability and availability), since a device failure might put people in danger or result in financial loss. The lack of a design tool for assessing the dependability of IoT applications at the early planning and design phases prevents system designers from optimizing their decisions so as to minimize the effects of such faults on the network devices. In this paper, we propose a dependability evaluation tool for IoT applications, when hardware faults and permanent link faults are considered.
Multimedia Tools and Applications | 2013
Daniel G. Costa; Luiz Affonso Guedes
Wireless ad-hoc networks composed of resource-constrained camera-enabled sensors can provide visual information for a series of monitoring applications, enriching the understanding of the physical world. In many cases, source nodes may have different sensing relevancies for the monitoring functions of the applications, according to the importance of the visual information retrieved from the monitored field. As a direct result, high quality is only required for the most relevant information and, as it is expected that many visual monitoring applications can tolerate some quality loss in the data received from the least relevant source nodes, the network operation can be optimized exploiting this innovative concept. As a novel global QoS parameter, we envisage that the sensing relevancies of source nodes can be considered for a series of optimizations in different aspects of the wireless sensor network operation, achieving energy saving or assuring high quality transmission for the most relevant data. In this paper we discuss some approaches for the establishment of the sensing relevancies of the nodes and propose a protocol to support them. Moreover, we present two practical examples of optimizations based on the sensing relevancies of source nodes that transmit still images of the monitored field, addressing issues as energy-efficient data transmission and packet prioritization in intermediate nodes.
society of instrument and control engineers of japan | 2006
Raimundo Viegas; Ricardo Valentim; Daniel G. Texeira; Luiz Affonso Guedes
The Ethernet technology dominates the market of computer networks. However, it was not been established as technology for industrial automation, where the requirements demand determinism and real-time performance. Many solutions have been proposed to solve the problem of non-determinism, which are based on TDMA (time division multiple access), token passing and master-slave. This article realizes measurements performance comparing implementations in the data communication with UDP and RAW Ethernet protocols, identifying the most viable alternative to support the development of real-time application to industrial automation networks
Sensors | 2015
Marcelo Nobre; Ivanovitch M. D. Silva; Luiz Affonso Guedes
Wireless communication is a trend nowadays for the industrial environment. A number of different technologies have emerged as solutions satisfying strict industrial requirements (e.g., WirelessHART, ISA100.11a, WIA-PA). As the industrial environment presents a vast range of applications, adopting an adequate solution for each case is vital to obtain good performance of the system. In this context, the routing and scheduling schemes associated with these technologies have a direct impact on important features, like latency and energy consumption. This situation has led to the development of a vast number of routing and scheduling schemes. In the present paper, we focus on the WirelessHART technology, emphasizing its most important routing and scheduling aspects in order to guide both end users and the developers of new algorithms. Furthermore, we provide a detailed literature review of the newest routing and scheduling techniques for WirelessHART, discussing each of their features. These routing algorithms have been evaluated in terms of their objectives, metrics, the usage of the WirelessHART structures and validation method. In addition, the scheduling algorithms were also evaluated by metrics, validation, objectives and, in addition, by multiple superframe support, as well as by the redundancy method used. Moreover, this paper briefly presents some insights into the main WirelessHART simulation modules available, in order to provide viable test platforms for the routing and scheduling algorithms. Finally, some open issues in WirelessHART routing and scheduling algorithms are discussed.
International Journal of Distributed Sensor Networks | 2013
Daniel G. Costa; Luiz Affonso Guedes; Francisco Vasques; Paulo Portugal
Camera networks have been considered for a large set of visual monitoring applications. For some of them, cameras may be continuously monitoring scenes or groups of targets, but some events may trigger a critical level of visual monitoring, as in public security, industrial automation, and response to natural disasters. In such way, some critical events as a bomb explosion, a volcanic eruption, forest wildfire, or a car accident must be captured with high relevance, potentially helping when identifying responsibilities and during rescue operations. New relevance levels, which can be reflected in higher quality of transmitted images or video streams or even higher priority during transmission over the network must be quickly assigned to cameras that can view the critical events. In this work we propose a methodology to dynamically assign relevancies to cameras that view the area of critical events, employing scalar sensors and a decentralized decision mechanism. The resulting multimodal camera network can considerably enhance the critical surveillance in different monitoring applications. We propose some optimizations that exploit the monitoring relevance in such scenarios.
Computers & Electrical Engineering | 2013
Raimundo Viegas; Luiz Affonso Guedes; Francisco Vasques; Paulo Portugal; Ricardo Moraes
This paper proposes a new real-time communication scheme for 802.11e wireless networks. This scheme is called Group Sequential Communication (GSC). The GSC improves the efficiency of the Hybrid Coordination Function Controlled Channel Access (HCCA) mechanism by reducing the protocol overheads of the 802.11e amendment. The GSC approach eliminates the polling scheme used in traditional scheduling algorithm, by means of a virtual token passing procedure among members of the real-time group to whom is granted a high-priority and sequential access to communication medium. In order to improve the reliability of the proposed scheme, it is also proposed an error recovery mechanism based on block acknowledgment. The GSC was implemented in network simulator software and the performance results were compared to HCCA scheme, showing the efficient of the proposed approach when dealing with traditional industrial communication scenarios.
international conference on networking sensing and control | 2014
Daniel A. Macedo; Luiz Affonso Guedes; Ivanovitch M. D. Silva
The Internet of Things (IoT) is a promising networking paradigm which immerses objects (cell phones, goods, watches, sensing motes, TVs, etc.) in a worldwide connection. Despite its high degree of applicability, the IoT faces some challenges. One of the most challenging problems is its dependability (reliability and availability), since a device failure might put people in danger or result in financial loss. An alternative to mitigate these consequences is the adoption of a strategy based on spare devices. If a primary device fails, the spare device could assume its functions in a safe way. Thus, this work proposes mathematical models based on Markov Chain which is able to estimate the reliability and availability of IoT applications considering redundancy aspects. The proposal can be used in order to provide valuable data at the early planning and design phases of an IoT application.