Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luka Cicin-Sain is active.

Publication


Featured researches published by Luka Cicin-Sain.


Journal of Virology | 2005

Frequent Coinfection of Cells Explains Functional In Vivo Complementation between Cytomegalovirus Variants in the Multiply Infected Host

Luka Cicin-Sain; Jürgen Podlech; Martin Messerle; Matthias J. Reddehase; Ulrich H. Koszinowski

ABSTRACT In contrast to many other virus infections, primary cytomegalovirus (CMV) infection does not fully protect against reinfection. Accordingly, clinical data have revealed a coexistence of multiple human CMV variants/strains in individual patients. Notably, the phenomenon of multiple infection was found to correlate with increased virus load and severity of CMV disease. Although of obvious medical relevance, the mechanism underlying this correlation is unknown. A weak immune response in an individual could be responsible for a more severe disease and for multiple infections. Alternatively, synergistic contributions of variants that differ in their biological properties can lead to qualitative changes in viral fitness by direct interactions such as genetic recombination or functional complementation within coinfected host cells. We have addressed this important question paradigmatically with the murine model by differently designed combinations of two viruses employed for experimental coinfection of mice. Specifically, a murine cytomegalovirus (MCMV) mutant expressing Cre recombinase was combined for coinfection with a mutant carrying Cre-inducible green fluorescent protein gene, and attenuated mutants were combined for coinfection with wild-type virus followed by two-color in situ hybridization studies visualizing the replication of the two viruses in infected host organs. These different approaches concurred in the conclusion that coinfection of host cells is more frequent than statistically predicted and that this coinfection alters virus fitness by functional trans-complementation rather than by genetic recombination. The reported findings make a major contribution to our molecular understanding of enhanced CMV pathogenicity in the multiply infected host.


Immunity & Ageing | 2012

CMV and Immunosenescence: from basics to clinics

Rafael Solana; Raquel Tarazona; Allison E. Aiello; Arne N. Akbar; Victor Appay; Mark Beswick; Jos A. Bosch; Carmen Campos; Sara Cantisán; Luka Cicin-Sain; Evelyna Derhovanessian; Sara Ferrando-Martínez; Daniela Frasca; Tamas Fulop; Sheila Govind; Beatrix Grubeck-Loebenstein; Ann B. Hill; Mikko Hurme; Florian Kern; Anis Larbi; Miguel López-Botet; Andrea B. Maier; Janet E. McElhaney; Paul Moss; Elissaveta Naumova; Janko Nikolich-Zugich; Alejandra Pera; Jerrald L. Rector; Natalie E. Riddell; Beatriz Sanchez-Correa

Alone among herpesviruses, persistent Cytomegalovirus (CMV) markedly alters the numbers and proportions of peripheral immune cells in infected-vs-uninfected people. Because the rate of CMV infection increases with age in most countries, it has been suggested that it drives or at least exacerbates “immunosenescence”. This contention remains controversial and was the primary subject of the Third International Workshop on CMV & Immunosenescence which was held in Cordoba, Spain, 15-16th March, 2012. Discussions focused on several main themes including the effects of CMV on adaptive immunity and immunosenescence, characterization of CMV-specific T cells, impact of CMV infection and ageing on innate immunity, and finally, most important, the clinical implications of immunosenescence and CMV infection. Here we summarize the major findings of this workshop.


PLOS Pathogens | 2012

Cytomegalovirus Infection Impairs Immune Responses and Accentuates T-cell Pool Changes Observed in Mice with Aging

Luka Cicin-Sain; James D. Brien; Jennifer L. Uhrlaub; Anja Drabig; Thomas F. Marandu; Janko Nikolich-Zugich

Prominent immune alterations associated with aging include the loss of naïve T-cell numbers, diversity and function. While genetic contributors and mechanistic details in the aging process have been addressed in multiple studies, the role of environmental agents in immune aging remains incompletely understood. From the standpoint of environmental infectious agents, latent cytomegalovirus (CMV) infection has been associated with an immune risk profile in the elderly humans, yet the cause-effect relationship of this association remains unclear. Here we present direct experimental evidence that mouse CMV (MCMV) infection results in select T-cell subset changes associated with immune aging, namely the increase of relative and absolute counts of CD8 T-cells in the blood, with a decreased representation of the naïve and the increased representation of the effector memory blood CD8 T-cells. Moreover, MCMV infection resulted in significantly weaker CD8 responses to superinfection with Influenza, Human Herpes Virus I or West-Nile-Virus, even 16 months following MCMV infection. These irreversible losses in T-cell function could not be observed in uninfected or in vaccinia virus-infected controls and were not due to the immune-evasive action of MCMV genes. Rather, the CD8 activation in draining lymph nodes upon viral challenge was decreased in MCMV infected mice and the immune response correlated directly to the frequency of the naïve and inversely to that of the effector cells in the blood CD8 pool. Therefore, latent MCMV infection resulted in pronounced changes of the T-cell compartment consistent with impaired naïve T-cell function.


PLOS Neglected Tropical Diseases | 2011

A replicating cytomegalovirus-based vaccine encoding a single Ebola virus nucleoprotein CTL epitope confers protection against Ebola virus

Yoshimi Tsuda; Patrizia Caposio; Christopher J. Parkins; Sara Botto; Ilhem Messaoudi; Luka Cicin-Sain; Heinz Feldmann; Michael A. Jarvis

Background Human outbreaks of Ebola virus (EBOV) are a serious human health concern in Central Africa. Great apes (gorillas/chimpanzees) are an important source of EBOV transmission to humans due to increased hunting of wildlife including the ‘bush-meat’ trade. Cytomegalovirus (CMV) is an highly immunogenic virus that has shown recent utility as a vaccine platform. CMV-based vaccines also have the unique potential to re-infect and disseminate through target populations regardless of prior CMV immunity, which may be ideal for achieving high vaccine coverage in inaccessible populations such as great apes. Methodology/Principal Findings We hypothesize that a vaccine strategy using CMV-based vectors expressing EBOV antigens may be ideally suited for use in inaccessible wildlife populations. To establish a ‘proof-of-concept’ for CMV-based vaccines against EBOV, we constructed a mouse CMV (MCMV) vector expressing a CD8+ T cell epitope from the nucleoprotein (NP) of Zaire ebolavirus (ZEBOV) (MCMV/ZEBOV-NPCTL). MCMV/ZEBOV-NPCTL induced high levels of long-lasting (>8 months) CD8+ T cells against ZEBOV NP in mice. Importantly, all vaccinated animals were protected against lethal ZEBOV challenge. Low levels of anti-ZEBOV antibodies were only sporadically detected in vaccinated animals prior to ZEBOV challenge suggesting a role, at least in part, for T cells in protection. Conclusions/Significance This study demonstrates the ability of a CMV-based vaccine approach to protect against an highly virulent human pathogen, and supports the potential for ‘disseminating’ CMV-based EBOV vaccines to prevent EBOV transmission in wildlife populations.


Journal of Virology | 2008

Passive Immunization Reduces Murine Cytomegalovirus-Induced Brain Pathology in Newborn Mice

Durdica Cekinovic; Mijo Golemac; Ester Pernjak Pugel; Jelena Tomac; Luka Cicin-Sain; Irena Slavuljica; Russell D. Bradford; Sonja Misch; Thomas H. Winkler; Michael Mach; William J. Britt; Stipan Jonjić

ABSTRACT Human cytomegalovirus (HCMV) is the most frequent cause of congenital viral infections in humans and frequently leads to long-term central nervous system (CNS) abnormalities that include learning disabilities, microcephaly, and hearing loss. The pathogenesis of the CNS infection has not been fully elucidated and may arise as a result of direct damage of CMV-infected neurons or indirectly secondary to inflammatory response to infection. We used a recently established model of mouse CMV (MCMV) infection in newborn mice to analyze the contribution of humoral immunity to virus clearance from the brain. In brains of MCMV-infected newborn mice treated with immune serum, the titer of infectious virus was reduced below detection limit, whereas in the brains of mice receiving control (nonimmune) serum significant amounts of virus were recovered. Moreover, histopathological and immunohistological analyses revealed significantly less CNS inflammation in mice treated with immune serum. Treatment with MCMV-specific monoclonal antibodies also resulted in the reduction of virus titer in the brain. Recipients of control serum or irrelevant antibodies had more viral foci, marked mononuclear cell infiltrates, and prominent glial nodules in their brains than mice treated with immune serum or MCMV-specific antibodies. In conclusion, our data indicate that virus-specific antibodies have a protective role in the development of CNS pathology in MCMV-infected newborn mice, suggesting that antiviral antibodies may be an important component of protective immunological responses during CMV infection of the developing CNS.


Journal of Virology | 2008

Dominant-Negative FADD Rescues the In Vivo Fitness of a Cytomegalovirus Lacking an Antiapoptotic Viral Gene

Luka Cicin-Sain; Zsolt Ruzsics; Juergen Podlech; Ivan Bubić; Carine Ménard; Stipan Jonjić; Matthias J. Reddehase; Ulrich H. Koszinowski

ABSTRACT Genes that inhibit apoptosis have been described for many DNA viruses. Herpesviruses often contain even more than one gene to control cell death. Apoptosis inhibition by viral genes is postulated to contribute to viral fitness, although a formal proof is pending. To address this question, we studied the mouse cytomegalovirus (MCMV) protein M36, which binds to caspase-8 and blocks death receptor-induced apoptosis. The growth of MCMV recombinants lacking M36 (ΔM36) was attenuated in vitro and in vivo. In vitro, caspase inhibition by zVAD-fmk blocked apoptosis in ΔM36-infected macrophages and rescued the growth of the mutant. In vivo, ΔM36 infection foci in liver tissue contained significantly more apoptotic hepatocytes and Kupffer cells than did revertant virus foci, and apoptosis occurred during the early phase of virus replication prior to virion assembly. To further delineate the mode of M36 function, we replaced the M36 gene with a dominant-negative FADD (FADDDN) in an MCMV recombinant. FADDDN was expressed in cells infected with the recombinant and blocked the death-receptor pathway, replacing the antiapoptotic function of M36. Most importantly, FADDDN rescued ΔM36 virus replication, both in vitro and in vivo. These findings have identified the biological role of M36 and define apoptosis inhibition as a key determinant of viral fitness.


Journal of Immunology | 2011

Cytomegalovirus-Specific T Cell Immunity Is Maintained in Immunosenescent Rhesus Macaques

Luka Cicin-Sain; Andrew W. Sylwester; Shoko I. Hagen; Don C. Siess; Noreen Currier; Alfred W. Legasse; Miranda Fischer; Caroline W. Koudelka; Michael K. Axthelm; Janko Nikolich-Žugich; Louis J. Picker

Although CMV infection is largely benign in immunocompetent people, the specific T cell responses associated with control of this persistent virus are enormous and must be maintained for life. These responses may increase with advanced age and have been linked to an “immune risk profile” that is associated with poor immune responsiveness and increased mortality in aged individuals. Based on this association, it has been suggested that CMV-specific T cell responses might become dysfunctional with age and thereby contribute to the development of immune senescence by homeostatic disruption of other T cell populations, diminished control of CMV replication, and/or excess chronic inflammation. In this study, we use the rhesus macaque (RM) model of aging to ask whether the quantity and quality of CMV-specific T cell responses differ between healthy adult RMs and elderly RMs that manifest hallmarks of immune aging. We demonstrate that the size of the CD4+ and CD8+ CMV-specific T cell pools are similar in adult versus old RMs and show essentially identical phenotypic and functional characteristics, including a dominant effector memory phenotype, identical patterns of IFN-γ, TNF-α, and IL-2 production and cytotoxic degranulation, and comparable functional avidities of optimal epitope-specific CD8+ T cells. Most importantly, the response to and protection against an in vivo CMV challenge were identical in adult and aged RMs. These data indicate that CMV-specific T cell immunity is well maintained in old RMs and argue against a primary role for progressive dysfunction of these responses in the development of immune senescence.


Journal of Virology | 2007

Targeted Deletion of Regions Rich in Immune-Evasive Genes from the Cytomegalovirus Genome as a Novel Vaccine Strategy

Luka Cicin-Sain; Ivan Bubić; Margit Schnee; Zsolt Ruzsics; Christian A. Mohr; Stipan Jonjić; Ulrich H. Koszinowski

ABSTRACT Human cytomegalovirus (CMV), a ubiquitous human pathogen, is a leading cause of congenital infections and represents a serious health risk for the immunosuppressed patient. A vaccine against CMV is currently not available. CMV is characterized by its large genome and by multiple genes modulating the immunity of the host, which cluster predominantly at genome termini. Here, we tested whether the deletion of gene blocks rich in immunomodulatory genes could be used as a novel concept in the generation of immunogenic but avirulent, herpesvirus vaccines. To generate an experimental CMV vaccine, we selectively deleted 32 genes from the mouse cytomegalovirus (MCMV) genome. The resulting mutant grew to titers similar to that of wild-type MCMV in vitro. In vivo, the mutant was 10,000-fold attenuated and well tolerated, even by highly susceptible mice deficient for B, T, and NK cells or for the interferon type I receptor. Equally relevant for safety concerns, immune suppression did not lead to the mutants reactivation from latency. Immunization with the replication-competent mutant, but not with inactivated virus, resulted in protective immunity, which increased over time. Vaccination induced MCMV-specific antibodies and a strong T-cell response. We propose that a targeted and rational approach can improve future herpesvirus vaccines and vaccine vectors.


Journal of Virology | 2003

Vaccination of Mice with Bacteria Carrying a Cloned Herpesvirus Genome Reconstituted In Vivo

Luka Cicin-Sain; Wolfram Brune; Ivan Bubić; Stipan Jonjić; Ulrich H. Koszinowski

ABSTRACT Bacterial delivery systems are gaining increasing interest as potential vaccination vectors to deliver either proteins or nucleic acids for gene expression in the recipient. Bacterial delivery systems for gene expression in vivo usually contain small multicopy plasmids. We have shown before that bacteria containing a herpesvirus bacterial artificial chromosome (BAC) can reconstitute the virus replication cycle after cocultivation with fibroblasts in vitro. In this study we addressed the question of whether bacteria containing a single plasmid with a complete viral genome can also reconstitute the viral replication process in vivo. We used a natural mouse pathogen, the murine cytomegalovirus (MCMV), whose genome has previously been cloned as a BAC in Escherichia coli. In this study, we tested a new application for BAC-cloned herpesvirus genomes. We show that the MCMV BAC can be stably maintained in certain strains of Salmonella enterica serovar Typhimurium as well and that both serovar Typhimurium and E. coli harboring the single-copy MCMV BAC can reconstitute a virus infection upon injection into mice. By this procedure, a productive virus infection is regenerated only in immunocompromised mice. Virus reconstitution in vivo causes elevated titers of specific anti-MCMV antibodies, protection against lethal MCMV challenge, and strong expression of additional genes introduced into the viral genome. Thus, the reconstitution of infectious virus from live attenuated bacteria presents a novel concept for multivalent virus vaccines launched from bacterial vectors.


Journal of Immunology | 2013

The Context of Gene Expression Defines the Immunodominance Hierarchy of Cytomegalovirus Antigens

Iryna Dekhtiarenko; Michael A. Jarvis; Zsolt Ruzsics; Luka Cicin-Sain

Natural immunity to CMV dominates the CD4 and CD8 memory compartments of the CMV-seropositive host. This property has been recently exploited for experimental CMV-based vaccine vector strategies, and it has shown promise in animal models of AIDS and Ebola disease. Although it is generally agreed that CMV-based vaccine vectors may induce highly protective and persistent memory T cells, the influence of the gene expression context on Ag-specific T cell memory responses and immune protection induced by CMV vectors is not known. Using murine CMV (MCMV) recombinants expressing a single CD8 T cell epitope from HSV-1 fused to different MCMV genes, we show that magnitude and kinetics of T cell responses induced by CMV are dependent on the gene expression of CMV Ags. Interestingly, the kinetics of the immune response to the HSV-1 epitope was paralleled by a reciprocal depression of immune responses to endogenous MCMV Ags. Infection with a recombinant MCMV inducing a vigorous initial immune response to the recombinant peptide resulted in a depressed early response to endogenous MCMV Ag. Another recombinant virus, which induced a slowly developing “inflationary” T cell response to the HSV-1 peptide, induced weaker long-term responses to endogenous CMV Ags. Importantly, both mutants were able to protect mice from a challenge with HSV-1, mediating strong sterilizing immunity. Our data suggest that the context of gene expression markedly influences the T cell immunodominance hierarchy of CMV Ags, but the immune protection against HSV-1 does not require inflationary CD8 responses against the recombinant CMV-expressed epitope.

Collaboration


Dive into the Luka Cicin-Sain's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ramon Arens

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anke Redeker

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge