Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lukas Balek is active.

Publication


Featured researches published by Lukas Balek.


PLOS ONE | 2012

Receptor tyrosine kinases activate canonical WNT/β-catenin signaling via MAP kinase/LRP6 pathway and direct β-catenin phosphorylation.

Pavel Krejčí; Anie Aklian; Markéta Kaucká; Eva Sevcikova; Jirina Prochazkova; Jan Mašek; Pavol Mikolka; Tereza Pospisilova; Tereza Spoustova; MaryAnn Weis; William A. Paznekas; Joshua Wolf; J. Silvio Gutkind; William R. Wilcox; Alois Kozubík; Ethylin Wang Jabs; Vitezslav Bryja; Lisa Salazar; Iva Vesela; Lukas Balek

Receptor tyrosine kinase signaling cooperates with WNT/β-catenin signaling in regulating many biological processes, but the mechanisms of their interaction remain poorly defined. We describe a potent activation of WNT/β-catenin by FGFR2, FGFR3, EGFR and TRKA kinases, which is independent of the PI3K/AKT pathway. Instead, this phenotype depends on ERK MAP kinase-mediated phosphorylation of WNT co-receptor LRP6 at Ser1490 and Thr1572 during its Golgi network-based maturation process. This phosphorylation dramatically increases the cellular response to WNT. Moreover, FGFR2, FGFR3, EGFR and TRKA directly phosphorylate β-catenin at Tyr142, which is known to increase cytoplasmic β-catenin concentration via release of β-catenin from membranous cadherin complexes. We conclude that signaling via ERK/LRP6 pathway and direct β-catenin phosphorylation at Tyr142 represent two mechanisms used by various receptor tyrosine kinase systems to activate canonical WNT signaling.


Biochimica et Biophysica Acta | 2015

Fibroblast growth factor and canonical WNT/β-catenin signaling cooperate in suppression of chondrocyte differentiation in experimental models of FGFR signaling in cartilage

Marcela Buchtová; Veronika Oralová; Anie Aklian; Jan Mašek; Iva Vesela; Zhufeng Ouyang; Tereza Obadalova; Zaneta Konecna; Tereza Spoustova; Tereza Pospisilova; Petr Matula; Miroslav Varecha; Lukas Balek; Iva Gudernova; Iva Jelínková; Ivan Duran; Iveta Cervenkova; Shunichi Murakami; Alois Kozubík; Petr Dvorak; Vitezslav Bryja; Pavel Krejčí

Aberrant fibroblast growth factor (FGF) signaling disturbs chondrocyte differentiation in skeletal dysplasia, but the mechanisms underlying this process remain unclear. Recently, FGF was found to activate canonical WNT/β-catenin pathway in chondrocytes via Erk MAP kinase-mediated phosphorylation of WNT co-receptor Lrp6. Here, we explore the cellular consequences of such a signaling interaction. WNT enhanced the FGF-mediated suppression of chondrocyte differentiation in mouse limb bud micromass and limb organ cultures, leading to inhibition of cartilage nodule formation in micromass cultures, and suppression of growth in cultured limbs. Simultaneous activation of the FGF and WNT/β-catenin pathways resulted in loss of chondrocyte extracellular matrix, expression of genes typical for mineralized tissues and alteration of cellular shape. WNT enhanced the FGF-mediated downregulation of chondrocyte proteoglycan and collagen extracellular matrix via inhibition of matrix synthesis and induction of proteinases involved in matrix degradation. Expression of genes regulating RhoA GTPase pathway was induced by FGF in cooperation with WNT, and inhibition of the RhoA signaling rescued the FGF/WNT-mediated changes in chondrocyte cellular shape. Our results suggest that aberrant FGF signaling cooperates with WNT/β-catenin in suppression of chondrocyte differentiation.


Human Molecular Genetics | 2016

Multikinase activity of fibroblast growth factor receptor (FGFR) inhibitors SU5402, PD173074, AZD1480, AZD4547 and BGJ398 compromises the use of small chemicals targeting FGFR catalytic activity for therapy of short-stature syndromes

Iva Gudernova; Iva Vesela; Lukas Balek; Marcela Buchtová; Hana Dosedelova; Michaela Kunová; Jakub Pivnicka; Iva Jelínková; Lucie Roubalova; Alois Kozubík; Pavel Krejčí

Activating mutations in the fibroblast growth factor receptor 3 (FGFR3) cause the most common genetic form of human dwarfism, achondroplasia (ACH). Small chemical inhibitors of FGFR tyrosine kinase activity are considered to be viable option for treating ACH, but little experimental evidence supports this claim. We evaluated five FGFR tyrosine kinase inhibitors (TKIs) (SU5402, PD173074, AZD1480, AZD4547 and BGJ398) for their activity against FGFR signaling in chondrocytes. All five TKIs strongly inhibited FGFR activation in cultured chondrocytes and limb rudiment cultures, completely relieving FGFR-mediated inhibition of chondrocyte proliferation and maturation. In contrast, TKI treatment of newborn mice did not improve skeletal growth and had lethal toxic effects on the liver, lungs and kidneys. In cell-free kinase assays as well as in vitro and in vivo cell assays, none of the tested TKIs demonstrated selectivity for FGFR3 over three other FGFR tyrosine kinases. In addition, the TKIs exhibited significant off-target activity when screened against a panel of 14 unrelated tyrosine kinases. This was most extensive in SU5402 and AZD1480, which inhibited DDR2, IGF1R, FLT3, TRKA, FLT4, ABL and JAK3 with efficiencies similar to or greater than those for FGFR. Low target specificity and toxicity of FGFR TKIs thus compromise their use for treatment of ACH. Conceptually, different avenues of therapeutic FGFR3 targeting should be investigated.


European Journal of Endocrinology | 2015

A novel variant of FGFR3 causes proportionate short stature

Sarina G Kant; Iveta Cervenkova; Lukas Balek; Lukáš Trantírek; Gijs Willem Eduard Santen; Martine C de Vries; Hermine A van Duyvenvoorde; Michiel J R van der Wielen; Annemieke Johanna Maria Henrietta Verkerk; André G Uitterlinden; Sabine E Hannema; Jan Maarten Wit; Wilma Oostdijk; Pavel Krejčí; Monique Losekoot

OBJECTIVE Mutations of the fibroblast growth factor receptor 3 (FGFR3) cause various forms of short stature, of which the least severe phenotype is hypochondroplasia, mainly characterized by disproportionate short stature. Testing for an FGFR3 mutation is currently not part of routine diagnostic testing in children with short stature without disproportion. DESIGN A three-generation family A with dominantly transmitted proportionate short stature was studied by whole-exome sequencing to identify the causal gene mutation. Functional studies and protein modeling studies were performed to confirm the pathogenicity of the mutation found in FGFR3. We performed Sanger sequencing in a second family B with dominant proportionate short stature and identified a rare variant in FGFR3. METHODS Exome sequencing and/or Sanger sequencing was performed, followed by functional studies using transfection of the mutant FGFR3 into cultured cells; homology modeling was used to construct a three-dimensional model of the two FGFR3 variants. RESULTS A novel p.M528I mutation in FGFR3 was detected in family A, which segregates with short stature and proved to be activating in vitro. In family B, a rare variant (p.F384L) was found in FGFR3, which did not segregate with short stature and showed normal functionality in vitro compared with WT. CONCLUSIONS Proportionate short stature can be caused by a mutation in FGFR3. Sequencing of this gene can be considered in patients with short stature, especially when there is an autosomal dominant pattern of inheritance. However, functional studies and segregation studies should be performed before concluding that a variant is pathogenic.


Stem Cells | 2013

Decrease in Abundance of Apurinic/Apyrimidinic Endonuclease Causes Failure of Base Excision Repair in Culture-Adapted Human Embryonic Stem Cells

Miriama Krutá; Lukas Balek; Renata Hejnová; Zuzana Dobšáková; Lívia Eiselleová; Kamil Matulka; Tomáš Bárta; Petr Fojtík; Jiří Fajkus; Aleš Hampl; Vladimír Rotrekl

The inevitable accumulation of chromosomal abnormalities in human embryonic stem cells (hESCs) during in vitro expansion represents a considerable obstacle for cell replacement therapies. To determine the source of chromosomal abnormalities, we examined hESCs maintained in culture for over 55 months for defects in telomere maintenance and DNA repair. Although prolonged culture affected neither telomerase activity nor nonhomologous end joining, the efficiency of base excision repair (BER) was significantly decreased and correlated with reduced expression of apurinic/apyrimidinic endonuclease 1 (APE1), the major nuclease required for BER. Interestingly, the expression of other BER enzymes was unchanged. Addition of human recombinant APE1 protein to nuclear extracts from late passage hESCs increased BER efficiency to the level typical of early passage hESCs. The link between BER and double‐strand breaks (DSB) was demonstrated by decreased DSB release after downregulation of APE1 in early passage hESCs via siRNA. Correspondingly lower APE1 level in late passage hESC resulted in slower and less intensive but long lasting DSB release upon ionizing radiation (IR). Downregulation of APE1 in early passage hESCs also led to approximately 30% decrease in γ‐H2AX signaling following IR, similar to that in late passage hESCs. We suggest that downregulation of APE1 significantly contributes to the failure of BER during long‐term culture of hESCs, and further that BER failure is one of the factors affecting the genomic instability of hESCs by altering BER‐dependent DSB release and cell cycle/checkpoint signaling. STEM CELLS 2013;31:693–702


Human Molecular Genetics | 2016

An inactivating mutation in intestinal cell kinase, ICK, impairs hedgehog signalling and causes short rib-polydactyly syndrome.

S. Paige Taylor; Michaela Kunova Bosakova; Miroslav Vařecha; Lukas Balek; Tomáš Bárta; Lukáš Trantírek; Iva Jelínková; Ivan Duran; Iva Vesela; Kimberly N. Forlenza; Jorge Martin; Aleš Hampl; Michael J. Bamshad; Deborah A. Nickerson; Margie Jaworski; Jieun Song; Hyuk Wan Ko; Daniel H. Cohn; Deborah Krakow; Pavel Krejčí

The short rib polydactyly syndromes (SRPS) are a group of recessively inherited, perinatal-lethal skeletal disorders primarily characterized by short ribs, shortened long bones, varying types of polydactyly and concomitant visceral abnormalities. Mutations in several genes affecting cilia function cause SRPS, revealing a role for cilia function in skeletal development. To identify additional SRPS genes and discover novel ciliary molecules required for normal skeletogenesis, we performed exome sequencing in a cohort of patients and identified homozygosity for a missense mutation, p.E80K, in Intestinal Cell Kinase, ICK, in one SRPS family. The p.E80K mutation abolished serine/threonine kinase activity, resulting in altered ICK subcellular and ciliary localization, increased cilia length, aberrant cartilage growth plate structure, defective Hedgehog and altered ERK signalling. These data identify ICK as an SRPS-associated gene and reveal that abnormalities in signalling pathways contribute to defective skeletogenesis.


Osteoarthritis and Cartilage | 2017

Statins do not inhibit the FGFR signaling in chondrocytes

Bohumil Fafilek; Marek Hampl; N. Ricankova; Iva Vesela; Lukas Balek; M. Kunova Bosakova; Iva Gudernova; Miroslav Varecha; Marcela Buchtová; Pavel Krejčí

OBJECTIVE Statins are widely used drugs for cholesterol lowering, which were recently found to counteract the effects of aberrant fibroblast growth factor receptor (FGFR3) signaling in cell and animal models of FGFR3-related chondrodysplasia. This opened an intriguing therapeutic possibility for human dwarfing conditions caused by gain-of-function mutations in FGFR3, although the mechanism of statin action on FGFR3 remains unclear. Here, we determine the effect of statins on FGFR signaling in chondrocytes. DESIGN Cultured chondrocyte cell lines, mouse embryonic tibia cultures and limb bud micromasses were treated with FGF2 to activate FGFR signaling. The effects of atorvastatin, fluvastatin, lovastatin and pravastatin on FGFR3 protein stability and on FGFR-mediated chondrocyte growth-arrest, loss of extracellular matrix (ECM), induction of premature senescence and hypertrophic differentiation were evaluated. RESULTS Statins did not alter the level of FGFR3 protein expression nor produce any effect on FGFR-mediated inhibition of chondrocyte proliferation and hypertrophic differentiation in cultured chondrocyte cell lines, mouse tibia cultures or limb bud micromasses. CONCLUSION We conclude that statins do not inhibit the FGFR signaling in chondrocytes. Therefore the statin-mediated rescue of FGFR3-related chondrodysplasia, described before, is likely not intrinsic to the growth plate cartilage.


eLife | 2017

One reporter for in-cell activity profiling of majority of protein kinase oncogenes.

Iva Gudernova; Silvie Foldynova-Trantirkova; Barbora El Ghannamova; Bohumil Fafilek; Miroslav Varecha; Lukas Balek; Eva Hrubá; Lucie Jonatova; Iva Jelínková; Michaela Kunova Bosakova; Lukáš Trantírek; Jiri Mayer; Pavel Krejčí

In-cell profiling enables the evaluation of receptor tyrosine activity in a complex environment of regulatory networks that affect signal initiation, propagation and feedback. We used FGF-receptor signaling to identify EGR1 as a locus that strongly responds to the activation of a majority of the recognized protein kinase oncogenes, including 30 receptor tyrosine kinases and 154 of their disease-associated mutants. The EGR1 promoter was engineered to enhance trans-activation capacity and optimized for simple screening assays with luciferase or fluorescent reporters. The efficacy of the developed, fully synthetic reporters was demonstrated by the identification of novel targets for two clinically used tyrosine kinase inhibitors, nilotinib and osimertinib. A universal reporter system for in-cell protein kinase profiling will facilitate repurposing of existing anti-cancer drugs and identification of novel inhibitors in high-throughput screening studies. DOI: http://dx.doi.org/10.7554/eLife.21536.001


Cellular Signalling | 2018

Proteomic analyses of signalling complexes associated with receptor tyrosine kinase identify novel members of fibroblast growth factor receptor 3 interactome

Lukas Balek; Pavel Nemec; Peter Konik; Michaela Kunova Bosakova; Miroslav Varecha; Iva Gudernova; Jirina Medalova; Deborah Krakow; Pavel Krejčí

Receptor tyrosine kinases (RTKs) form multiprotein complexes that initiate and propagate intracellular signals and determine the RTK-specific signalling patterns. Unravelling the full complexity of protein interactions within the RTK-associated complexes is essential for understanding of RTK functions, yet it remains an understudied area of cell biology. We describe a comprehensive approach to characterize RTK interactome. A single tag immunoprecipitation and phosphotyrosine protein isolation followed by mass-spectrometry was used to identify proteins interacting with fibroblast growth factor receptor 3 (FGFR3). A total of 32 experiments were carried out in two different cell types and identified 66 proteins out of which only 20 (30.3%) proteins were already known FGFR interactors. Using co-immunoprecipitations, we validated FGFR3 interaction with adapter protein STAM1, transcriptional regulator SHOX2, translation elongation factor eEF1A1, serine/threonine kinases ICK, MAK and CCRK, and inositol phosphatase SHIP2. We show that unappreciated signalling mediators exist for well-studied RTKs, such as FGFR3, and may be identified via proteomic approaches described here. These approaches are easily adaptable to other RTKs, enabling identification of novel signalling mediators for majority of the known human RTKs.


Biotechnology and Bioengineering | 2018

Computer-assisted engineering of hyperstable fibroblast growth factor 2

Pavel Dvořák; David Bednář; Pavel Vaňáček; Lukas Balek; Lívia Eiselleová; Veronika Štěpánková; Eva Sebestova; Michaela Kunova Bosakova; Žaneta Konečná; Stanislav Mazurenko; Antonin Kunka; Tereza Váňová; Karolina Zoufalova; Radka Chaloupková; Jan Brezovský; Pavel Krejčí; Zbyněk Prokop; Jiří Damborský

Fibroblast growth factors (FGFs) serve numerous regulatory functions in complex organisms, and their corresponding therapeutic potential is of growing interest to academics and industrial researchers alike. However, applications of these proteins are limited due to their low stability. Here we tackle this problem using a generalizable computer‐assisted protein engineering strategy to create a unique modified FGF2 with nine mutations displaying unprecedented stability and uncompromised biological function. The data from the characterization of stabilized FGF2 showed a remarkable prediction potential of in silico methods and provided insight into the unfolding mechanism of the protein. The molecule holds a considerable promise for stem cell research and medical or pharmaceutical applications.

Collaboration


Dive into the Lukas Balek's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Iva Vesela

University of Veterinary and Pharmaceutical Sciences Brno

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lukáš Trantírek

Central European Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge