Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lukas Chavez is active.

Publication


Featured researches published by Lukas Chavez.


Nature Genetics | 2014

Large conserved domains of low DNA methylation maintained by Dnmt3a

Mira Jeong; Deqiang Sun; Min Luo; Yun Huang; Grant A. Challen; Benjamin Rodriguez; Xiaotian Zhang; Lukas Chavez; Hui Wang; Rebecca Hannah; Sang Bae Kim; Liubin Yang; Myunggon Ko; Rui Chen; Berthold Göttgens; Ju Seog Lee; Preethi H. Gunaratne; Lucy A. Godley; Gretchen J. Darlington; Anjana Rao; Wei Li; Margaret A. Goodell

Gains and losses in DNA methylation are prominent features of mammalian cell types. To gain insight into the mechanisms that promote shifts in DNA methylation and contribute to changes in cell fate, including malignant transformation, we performed genome-wide mapping of 5-methylcytosine and 5-hydroxymethylcytosine in purified mouse hematopoietic stem cells. We discovered extended regions of low methylation (canyons) that span conserved domains frequently containing transcription factors and are distinct from CpG islands and shores. About half of the genes in these methylation canyons are coated with repressive histone marks, whereas the remainder are covered by activating histone marks and are highly expressed in hematopoietic stem cells (HSCs). Canyon borders are demarked by 5-hydroxymethylcytosine and become eroded in the absence of DNA methyltransferase 3a (Dnmt3a). Genes dysregulated in human leukemias are enriched for canyon-associated genes. The new epigenetic landscape we describe may provide a mechanism for the regulation of hematopoiesis and may contribute to leukemia development.


Nature | 2013

Modulation of TET2 expression and 5-methylcytosine oxidation by the CXXC domain protein IDAX

Myunggon Ko; Jungeun An; Hozefa S. Bandukwala; Lukas Chavez; Tarmo Äijö; William A. Pastor; Matthew F. Segal; Huiming Li; Kian Peng Koh; Harri Lähdesmäki; Patrick G. Hogan; L. Aravind; Anjana Rao

TET (ten-eleven-translocation) proteins are Fe(ii)- and α-ketoglutarate-dependent dioxygenases that modify the methylation status of DNA by successively oxidizing 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxycytosine, potential intermediates in the active erasure of DNA-methylation marks. Here we show that IDAX (also known as CXXC4), a reported inhibitor of Wnt signalling that has been implicated in malignant renal cell carcinoma and colonic villous adenoma, regulates TET2 protein expression. IDAX was originally encoded within an ancestral TET2 gene that underwent a chromosomal gene inversion during evolution, thus separating the TET2 CXXC domain from the catalytic domain. The IDAX CXXC domain binds DNA sequences containing unmethylated CpG dinucleotides, localizes to promoters and CpG islands in genomic DNA and interacts directly with the catalytic domain of TET2. Unexpectedly, IDAX expression results in caspase activation and TET2 protein downregulation, in a manner that depends on DNA binding through the IDAX CXXC domain, suggesting that IDAX recruits TET2 to DNA before degradation. IDAX depletion prevents TET2 downregulation in differentiating mouse embryonic stem cells, and short hairpin RNA against IDAX increases TET2 protein expression in the human monocytic cell line U937. Notably, we find that the expression and activity of TET3 is also regulated through its CXXC domain. Taken together, these results establish the separate and linked CXXC domains of TET2 and TET3, respectively, as previously unknown regulators of caspase activation and TET enzymatic activity.


Genome Research | 2010

Computational analysis of genome-wide DNA methylation during the differentiation of human embryonic stem cells along the endodermal lineage

Lukas Chavez; Justyna Jozefczuk; Christina Grimm; Jörn Dietrich; Bernd Timmermann; Hans Lehrach; Ralf Herwig; James Adjaye

The generation of genome-wide data derived from methylated DNA immunoprecipitation followed by sequencing (MeDIP-seq) has become a major tool for epigenetic studies in health and disease. The computational analysis of such data, however, still falls short on accuracy, sensitivity, and speed. We propose a time-efficient statistical method that is able to cope with the inherent complexity of MeDIP-seq data with similar performance compared with existing methods. In order to demonstrate the computational approach, we have analyzed alterations in DNA methylation during the differentiation of human embryonic stem cells (hESCs) to definitive endoderm. We show improved correlation of normalized MeDIP-seq data in comparison to available whole-genome bisulfite sequencing data, and investigated the effect of differential methylation on gene expression. Furthermore, we analyzed the interplay between DNA methylation, histone modifications, and transcription factor binding and show that in contrast to de novo methylation, demethylation is mainly associated with regions of low CpG densities.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Distinct roles of the methylcytosine oxidases Tet1 and Tet2 in mouse embryonic stem cells

Yun Huang; Lukas Chavez; Xing Chang; Xue Wang; William A. Pastor; Jinsuk Kang; Jorge A. Zepeda-Martínez; Utz J. Pape; Steven E. Jacobsen; Bjoern Peters; Anjana Rao

Significance Methylation of cytosine bases in DNA is an epigenetic modification that influences gene expression. TET (Ten-Eleven Translocation) enzymes regulate DNA methylation status and facilitate DNA demethylation by converting 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) and further oxidation products in mammalian genomes. Of the three mammalian TET proteins, Tet1 and Tet2 are the major regulators of 5hmC levels in mouse embryonic stem (ES) cells. We show that Tet1 and Tet2 have distinct roles in mouse ES cells: Tet1 primarily regulates 5hmC levels at gene promoters and transcription start sites, whereas Tet2 mainly regulates 5hmC levels in gene bodies and exon boundaries of highly-expressed genes and exons respectively. Our results suggest a complex interplay between the functions of Tet1 and Tet2 proteins in mESC. Dioxygenases of the Ten-Eleven Translocation (TET) family are 5-methylcytosine oxidases that convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) and further oxidation products in DNA. We show that Tet1 and Tet2 have distinct roles in regulating 5hmC in mouse embryonic stem cells (mESC). Tet1 depletion diminishes 5hmC levels at transcription start sites (TSS), whereas Tet2 depletion is predominantly associated with decreased 5hmC in gene bodies. Enrichment of 5hmC is observed at the boundaries of exons that are highly expressed, and Tet2 depletion results in substantial loss of 5hmC at these boundaries. In contrast, at promoter/TSS regions, Tet2 depletion results in increased 5hmC, potentially because of the redundant activity of Tet1. Together, the data point to a complex interplay between Tet1 and Tet2 in mESC, and to distinct roles for these two proteins in regulating promoter, exon, and polyadenylation site usage in cells.


Bioinformatics | 2014

MEDIPS: genome-wide differential coverage analysis of sequencing data derived from DNA enrichment experiments

Matthias Lienhard; Christina Grimm; Markus Morkel; Ralf Herwig; Lukas Chavez

Motivation: DNA enrichment followed by sequencing is a versatile tool in molecular biology, with a wide variety of applications including genome-wide analysis of epigenetic marks and mechanisms. A common requirement of these diverse applications is a comparison of read coverage between experimental conditions. The amount of samples generated for such comparisons ranges from few replicates to hundreds of samples per condition for epigenome-wide association studies. Consequently, there is an urgent need for software that allows for fast and simple processing and comparison of sequencing data derived from enriched DNA. Results: Here, we present a major update of the R/Bioconductor package MEDIPS, which allows for an arbitrary number of replicates per group and integrates sophisticated statistical methods for the detection of differential coverage between experimental conditions. Our approach can be applied to a diversity of quantitative sequencing data. In addition, our update adds novel functionality to MEDIPS, including correlation analysis between samples, and takes advantage of Bioconductor’s annotation databases to facilitate annotation of specific genomic regions. Availability and implementation: The latest version of MEDIPS is available as version 1.12.0 and part of Bioconductor 2.13. The package comes with a manual containing detailed description of its functionality and is available at http://www.bioconductor.org. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.


Cancer Cell | 2016

Atypical Teratoid/Rhabdoid Tumors Are Comprised of Three Epigenetic Subgroups with Distinct Enhancer Landscapes

Pascal Johann; Serap Erkek; Marc Zapatka; Kornelius Kerl; Ivo Buchhalter; Volker Hovestadt; David T. W. Jones; Dominik Sturm; Carl Hermann; Maia Segura Wang; Andrey Korshunov; Marina Rhyzova; Susanne Gröbner; Sebastian Brabetz; Lukas Chavez; Susanne Bens; Stefan Gröschel; Fabian Kratochwil; Andrea Wittmann; Laura Sieber; Christina Geörg; Stefan Wolf; Katja Beck; Florian Oyen; David Capper; Peter van Sluis; Richard Volckmann; Jan Koster; Rogier Versteeg; Andreas von Deimling

Atypical teratoid/rhabdoid tumor (ATRT) is one of the most common brain tumors in infants. Although the prognosis of ATRT patients is poor, some patients respond favorably to current treatments, suggesting molecular inter-tumor heterogeneity. To investigate this further, we genetically and epigenetically analyzed 192 ATRTs. Three distinct molecular subgroups of ATRTs, associated with differences in demographics, tumor location, and type of SMARCB1 alterations, were identified. Whole-genome DNA and RNA sequencing found no recurrent mutations in addition to SMARCB1 that would explain the differences between subgroups. Whole-genome bisulfite sequencing and H3K27Ac chromatin-immunoprecipitation sequencing of primary tumors, however, revealed clear differences, leading to the identification of subgroup-specific regulatory networks and potential therapeutic targets.


Nature | 2016

Active medulloblastoma enhancers reveal subgroup-specific cellular origins

Charles Y. Lin; Serap Erkek; Yiai Tong; Linlin Yin; Alexander J. Federation; Marc Zapatka; Parthiv Haldipur; Daisuke Kawauchi; Thomas Risch; Hans Jörg Warnatz; Barbara C. Worst; Bensheng Ju; Brent A. Orr; Rhamy Zeid; Donald R. Polaski; Maia Segura-Wang; Sebastian M. Waszak; David T. W. Jones; Marcel Kool; Volker Hovestadt; Ivo Buchhalter; Laura Sieber; Pascal Johann; Lukas Chavez; Stefan Gröschel; Marina Ryzhova; Andrey Korshunov; Wenbiao Chen; Victor V. Chizhikov; Kathleen J. Millen

Medulloblastoma is a highly malignant paediatric brain tumour, often inflicting devastating consequences on the developing child. Genomic studies have revealed four distinct molecular subgroups with divergent biology and clinical behaviour. An understanding of the regulatory circuitry governing the transcriptional landscapes of medulloblastoma subgroups, and how this relates to their respective developmental origins, is lacking. Here, using H3K27ac and BRD4 chromatin immunoprecipitation followed by sequencing (ChIP-seq) coupled with tissue-matched DNA methylation and transcriptome data, we describe the active cis-regulatory landscape across 28 primary medulloblastoma specimens. Analysis of differentially regulated enhancers and super-enhancers reinforced inter-subgroup heterogeneity and revealed novel, clinically relevant insights into medulloblastoma biology. Computational reconstruction of core regulatory circuitry identified a master set of transcription factors, validated by ChIP-seq, that is responsible for subgroup divergence, and implicates candidate cells of origin for Group 4. Our integrated analysis of enhancer elements in a large series of primary tumour samples reveals insights into cis-regulatory architecture, unrecognized dependencies, and cellular origins.


Nature Immunology | 2014

Epigenomic analysis of primary human T cells reveals enhancers associated with TH2 memory cell differentiation and asthma susceptibility

Grégory Seumois; Lukas Chavez; Anna Gerasimova; Matthias Lienhard; Nada Omran; Lukas Kalinke; Maria Vedanayagam; Asha Purnima V Ganesan; Ashu Chawla; Ratko Djukanovic; K. Mark Ansel; Bjoern Peters; Anjana Rao; Pandurangan Vijayanand

A characteristic feature of asthma is the aberrant accumulation, differentiation or function of memory CD4+ T cells that produce type 2 cytokines (TH2 cells). By mapping genome-wide histone modification profiles for subsets of T cells isolated from peripheral blood of healthy and asthmatic individuals, we identified enhancers with known and potential roles in the normal differentiation of human TH1 cells and TH2 cells. We discovered disease-specific enhancers in T cells that differ between healthy and asthmatic individuals. Enhancers that gained the histone H3 Lys4 dimethyl (H3K4me2) mark during TH2 cell development showed the highest enrichment for asthma-associated single nucleotide polymorphisms (SNPs), which supported a pathogenic role for TH2 cells in asthma. In silico analysis of cell-specific enhancers revealed transcription factors, microRNAs and genes potentially linked to human TH2 cell differentiation. Our results establish the feasibility and utility of enhancer profiling in well-defined populations of specialized cell types involved in disease pathogenesis.


Nature | 2017

The whole-genome landscape of medulloblastoma subtypes

Paul A. Northcott; Ivo Buchhalter; A. Sorana Morrissy; Volker Hovestadt; Joachim Weischenfeldt; Tobias Ehrenberger; Susanne Gröbner; Maia Segura-Wang; Thomas Zichner; Vasilisa A. Rudneva; Hans-Jörg Warnatz; Nikos Sidiropoulos; Aaron H. Phillips; Steven E. Schumacher; Kortine Kleinheinz; Sebastian M. Waszak; Serap Erkek; David Jones; Barbara C. Worst; Marcel Kool; Marc Zapatka; Natalie Jäger; Lukas Chavez; Barbara Hutter; Matthias Bieg; Nagarajan Paramasivam; Michael Heinold; Zuguang Gu; Naveed Ishaque; Christina Jäger-Schmidt

Current therapies for medulloblastoma, a highly malignant childhood brain tumour, impose debilitating effects on the developing child, and highlight the need for molecularly targeted treatments with reduced toxicity. Previous studies have been unable to identify the full spectrum of driver genes and molecular processes that operate in medulloblastoma subgroups. Here we analyse the somatic landscape across 491 sequenced medulloblastoma samples and the molecular heterogeneity among 1,256 epigenetically analysed cases, and identify subgroup-specific driver alterations that include previously undiscovered actionable targets. Driver mutations were confidently assigned to most patients belonging to Group 3 and Group 4 medulloblastoma subgroups, greatly enhancing previous knowledge. New molecular subtypes were differentially enriched for specific driver events, including hotspot in-frame insertions that target KBTBD4 and ‘enhancer hijacking’ events that activate PRDM6. Thus, the application of integrative genomics to an extensive cohort of clinical samples derived from a single childhood cancer entity revealed a series of cancer genes and biologically relevant subtype diversity that represent attractive therapeutic targets for the treatment of patients with medulloblastoma.


Nature Immunology | 2016

Innate-like functions of natural killer T cell subsets result from highly divergent gene programs

Isaac Engel; Grégory Seumois; Lukas Chavez; Daniela Samaniego-Castruita; Brandie White; Ashu Chawla; Dennis Mock; Pandurangan Vijayanand; Mitchell Kronenberg

Natural killer T cells (NKT cells) have stimulatory or inhibitory effects on the immune response that can be attributed in part to the existence of functional subsets of NKT cells. These subsets have been characterized only on the basis of the differential expression of a few transcription factors and cell-surface molecules. Here we have analyzed purified populations of thymic NKT cell subsets at both the transcriptomic level and epigenomic level and by single-cell RNA sequencing. Our data indicated that despite their similar antigen specificity, the functional NKT cell subsets were highly divergent populations with many gene-expression and epigenetic differences. Therefore, the thymus imprints distinct gene programs on subsets of innate-like NKT cells that probably impart differences in proliferative capacity, homing, and effector functions.

Collaboration


Dive into the Lukas Chavez's collaboration.

Top Co-Authors

Avatar

Stefan M. Pfister

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Marcel Kool

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

David T. W. Jones

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Andrey Korshunov

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

David Capper

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Kristian W. Pajtler

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Volker Hovestadt

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Anjana Rao

La Jolla Institute for Allergy and Immunology

View shared research outputs
Top Co-Authors

Avatar

Serap Erkek

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Sebastian Brabetz

German Cancer Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge