Lukas Jelinek
Czech Technical University in Prague
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lukas Jelinek.
Applied Physics Letters | 2008
Manuel J. Freire; R. Marqués; Lukas Jelinek
In this work a μ=−1 metamaterial (MM) lens for magnetic resonance imaging (MRI) is demonstrated. MRI uses surface coils to detect the radio frequency (rf) energy absorbed and emitted by the nuclear spins in the imaged object. The proposed MM lens manipulates the rf field detected by these surface coils so that the coil sensitivity and spatial localization are substantially improved. Beyond this specific application, we feel that the reported results are the experimental confirmation of a new concept for the manipulation of rf field in MRI, which paves the way to many other interesting applications.
Journal of Applied Physics | 2005
Joan Garcia-Garcia; F. Martin; J. D. Baena; R. Marqués; Lukas Jelinek
In this paper, the behavior at resonance of split ring resonators (SRRs) and other related topologies, such as the nonbianisotropic SRR and the broadside-coupled SRR, are studied. It is shown that these structures exhibit a fundamental resonant mode (the quasistatic resonance) and other higher-order modes which are related to dynamic processes. The excitation of these modes by means of a properly polarized time varying magnetic and/or electric fields is discussed on the basis of resonator symmetries. To verify the electromagnetic properties of these resonators, simulations based on resonance excitation by nonuniform and uniform external fields have been performed. Inspection of the currents at resonances, inferred from particle symmetries and full-wave electromagnetic simulations, allows us to predict the first-order dipolar moments induced at the different resonators and to develop a classification of the resonances based on this concept. The experimental data, obtained in SRR-loaded waveguides, are in agreement with the theory and point out the rich phenomenology associated with these planar resonant structures.
Physical Review B | 2007
J. D. Baena; Lukas Jelinek; R. Marqués
In this paper a systematic approach to the design of bulk isotropic magnetic metamaterials is presented. The role of the symmetries of both the constitutive element and the lattice are analyzed. For this purpose it is assumed that the metamaterial is composed by cubic SRR resonators, arranged in a cubic lattice. The minimum symmetries needed to ensure an isotropic behavior are analyzed, and some particular configurations are proposed. Besides, an equivalent circuit model is proposed for the considered cubic SRR resonators. Experiments are carried out in order to validate the proposed theory. We hope that this analysis will pave the way to the design of bulk metamaterials with strong isotropic magnetic response, including negative permeability and left-handed metamaterials.
Journal of Magnetic Resonance | 2010
Manuel J. Freire; Lukas Jelinek; R. Marqués; Mikhail Lapine
In this work some possible applications of negative permeability magnetic metamaterial lenses for magnetic resonance imaging (MRI) are analyzed. It is shown that using magnetic metamaterials lenses it is possible to manipulate the spatial distribution of the radio-frequency (RF) field used in MR systems and, under some circumstances, improve the sensitivity of surface coils. Furthermore a collimation of the RF field, phenomenon that may find application in parallel imaging, is presented. MR images of real tissues are shown in order to prove the suitability of the theoretical analysis for practical applications.
Journal of Applied Physics | 2008
F. Aznar; M. Gil; Jordi Bonache; Lukas Jelinek; J. D. Baena; R. Marqués; F. Martin
In this paper, a method for obtaining the electrical characteristics of metamaterial resonators coupled to planar transmission lines is proposed. This parameter extraction technique is based on the comparison between the measured (or full wave electromagnetic simulated) transmission and reflection characteristics of a host line loaded with such resonators and those obtained from its lumped element equivalent circuit model (previously reported by some of the authors). The resonant particles considered in this study are split ring resonators, spiral resonators, and other electrically small resonant particles based on two metal levels. The interest in this technique lies in the lack of analytical models providing the electrical parameters of several of the considered ultrasmall resonator topologies (due to their complexity). From the extracted parameters, it is concluded that the circuit models predict very accurately the frequency responses of the considered structures for the different resonators under stu...
Applied Physics Letters | 2006
J. D. Baena; Lukas Jelinek; R. Marqués; J. Zehentner
The problem of the design of artificial magnetic resonators for isotropic metamaterials is addressed. The internal symmetries that ensure an isotropic behavior of such resonators are analyzed and some specific designs based on the proper arrangement of modified split ring resonators are proposed. These proposals are validated by electromagnetic simulations and experiments. The reported results are likely to have applications in the design of devices such as negative refractive index materials, superlenses, and metasurfaces with isotropic response.
Physical Review A | 2008
J. D. Baena; Lukas Jelinek; R. Marqués; Mário G. Silveirinha
A unified homogenization procedure for split ring metamaterials taking into account time and spatial dispersion is introduced. The procedure is based on two coupled systems of equations. The first one comes from an approximation of the metamaterial as a cubic arrangement of coupled LC circuits, giving the relation between currents and local magnetic field. The second equation comes from macroscopic Maxwell equations, and gives the relation between the macroscopic magnetic field and the average magnetization of the metamaterial. It is shown that electromagnetic and magnetoinductive waves propagating in the metamaterial are obtained from this analysis. Therefore, the proposed time and spatially dispersive permeability accounts for the characterization of the complete spectrum of waves of the metamaterial. Finally, it is shown that the proposed theory is in good quantitative and qualitative agreement with full wave simulations.
Applied Physics Letters | 2007
J. D. Baena; Lukas Jelinek; R. Marqués; Jack J. Mock; Jonah N. Gollub; David R. Smith
Isotropic frequency selective surface (FSS) made of cubic arrangements of split ring resonators (SRRs) is proposed and analyzed. For this purpose, a suitable isotropic modification of the SRR was used in the design of a cubic unit element invariant under the tetrahedral point symmetry group. It was experimentally demonstrated that the transmission through such a FSS is angle and polarization independent. For comparison, another FSS, whose unit elements do not satisfy necessary symmetries, was measured, showing clearly anisotropic behavior. We feel then that symmetries play an important role. Potential device applications are envisioned for antenna technology at microwave and terahertz frequencies.
IEEE Transactions on Antennas and Propagation | 2014
Miloslav Capek; Lukas Jelinek; Pavel Hazdra; Jan Eichler
New expressions are derived to calculate the Q factor of a radiating device. The resulting relations link Q based on the frequency change of the input impedance at the input port (QX, QZ) with expressions based solely on the current distribution on an radiating device. The question of which energies of a radiating system are observable is reviewed, and then the proposed Q factor as defined in this paper is physical. The derivation is based on potential theory rather than fields. This approach hence automatically eliminates all divergent integrals associated with electromagnetic energies in infinite space. The new formulas allow us to study the radiation Q factor for antennas without feeding (through e.g., characteristic modes) as well as fed by an arbitrary number of ports. The new technique can easily be implemented in any numerical software dealing with current densities. To present the merits of proposed technique, three canonical antennas are studied. Numerical examples show excellent agreement between the measurable QZ derived from input impedance and the new expressions.
Optics Express | 2009
R. Marqués; Lukas Jelinek; Francisco Mesa; Francisco Medina
This work analyzes the electromagnetic wave propagation through periodically stacked fishnets from zero frequency to the first Woods anomaly. It is shown that, apart from Fabry-Perot resonances, these structures support two transmission bands that can be backward under the appropriate conditions. The first band starts at Woods anomaly and is closely related to the well-known phenomena of extraordinary transmission through a single fishnet. The second band is related to the resonances of the fishnet holes. In both cases, the in-plane periodicity of the fishnet cannot be made electrically small, which prevents any attempt of homogenization of the structure along the fishnet planes. However, along the normal direction, even with very small periodicity transmission is still possible. An homogenization procedure can then be applied along this direction, thus making that the structure can behave as a backward-wave transmission line for such transmission bands. Closed-form design formulas will be provided by the analytical formulation here presented. These formulas have been carefully validated by intensive numerical computations.
Collaboration
Dive into the Lukas Jelinek's collaboration.
Centre for Ultrahigh Bandwidth Devices for Optical Systems
View shared research outputs