Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lukas K. Tamm is active.

Publication


Featured researches published by Lukas K. Tamm.


Quarterly Reviews of Biophysics | 1997

Infrared spectroscopy of proteins and peptides in lipid bilayers

Lukas K. Tamm; Suren A. Tatulian

Infrared spectroscopy is a useful technique for the determination of conformation and orientation of membrane-associated proteins and lipids. The technique is especially powerful for detecting conformational changes by recording spectral differences before and after perturbations in physiological solution. Polarized infrared measurements on oriented membrane samples have revealed valuable information on the orientation of chemical groupings and substructures within membrane molecules which is difficult to obtain by other methods. The application of infrared spectroscopy to the static and dynamic structure of proteins and peptides in lipid bilayers is reviewed with some emphasis on the importance of sample preparation. Limitations of the technique with regard to the absolute determination of secondary structure and orientation and new strategies for structural assignments are also discussed.


Biochimica et Biophysica Acta | 1992

Formation of supported planar bilayers by fusion of vesicles to supported phospholipid monolayers

Edwin Kalb; Sammy Frey; Lukas K. Tamm

A technique for the production of supported phospholipid bilayers by adsorption and fusion of small unilamellar vesicles to supported phospholipid monolayers on quartz is described. The physical properties of these supported bilayers are compared with those of supported bilayers which are prepared by Langmuir-Blodgett deposition or by direct vesicle fusion to plain quartz slides. The time courses of vesicle adsorption, fusion and desorption are followed by total internal reflection fluorescence microscopy and the lateral diffusion of the lipids in the adsorbed layers by fluorescence recovery after photobleaching. Complete supported bilayers can be formed with phosphatidylcholine vesicles at concentrations as low as 35 microM. However, the adsorption, fusion and desorption kinetics strongly depend on the used lipid, NaCl and Ca2+ concentrations. Asymmetric negatively charged supported bilayers can be produced by incubating a phosphatidylcholine monolayer with vesicles composed of 80% phosphatidylcholine and 20% phosphatidylglycerol. Adsorbed vesicles can be removed by washing with buffer. The measured fluorescence intensities after washing are consistent with single supported bilayers. The lateral diffusion experiments confirm that continuous extended bilayers are formed by the monolayer-fusion technique. The measured lateral diffusion coefficient of NBD-labeled phosphatidylethanolamine is (3.6 +/- 0.5) x 10(-8) cm2/s in supported phosphatidylcholine bilayers, independent of the method by which the bilayers were prepared.


Nature Structural & Molecular Biology | 2001

Membrane structure and fusion-triggering conformational change of the fusion domain from influenza hemagglutinin.

Xing Han; John H. Bushweller; David S. Cafiso; Lukas K. Tamm

The N-terminal domain of the influenza hemagglutinin (HA) is the only portion of the molecule that inserts deeply into membranes of infected cells to mediate the viral and the host cell membrane fusion. This domain constitutes an autonomous folding unit in the membrane, causes hemolysis of red blood cells and catalyzes lipid exchange between juxtaposed membranes in a pH-dependent manner. Combining NMR structures determined at pHs 7.4 and 5 with EPR distance constraints, we have deduced the structures of the N-terminal domain of HA in the lipid bilayer. At both pHs, the domain is a kinked, predominantly helical amphipathic structure. At the fusogenic pH 5, however, the domain has a sharper bend, an additional 310-helix and a twist, resulting in the repositioning of Glu 15 and Asp 19 relative to that at the nonfusogenic pH 7.4. Rotation of these charged residues out of the membrane plane creates a hydrophobic pocket that allows a deeper insertion of the fusion domain into the core of the lipid bilayer. Such an insertion mode could perturb lipid packing and facilitate lipid mixing between juxtaposed membranes.


Biophysical Journal | 2000

Tethered polymer-supported planar lipid bilayers for reconstitution of integral membrane proteins: silane-polyethyleneglycol-lipid as a cushion and covalent linker.

Michael L. Wagner; Lukas K. Tamm

There is increasing interest in supported membranes as models of biological membranes and as a physiological matrix for studying the structure and function of membrane proteins and receptors. A common problem of protein-lipid bilayers that are directly supported on a hydrophilic substrate is nonphysiological interactions of integral membrane proteins with the solid support to the extent that they will not diffuse in the plane of the membrane. To alleviate some of these problems we have developed a new tethered polymer-supported planar lipid bilayer system, which permitted us to reconstitute integral membrane proteins in a laterally mobile form. We have supported lipid bilayers on a newly designed polyethyleneglycol cushion, which provided a soft support and, for increased stability, covalent linkage of the membranes to the supporting quartz or glass substrates. The formation and morphology of the bilayers were followed by total internal reflection and epifluorescence microscopy, and the lateral diffusion of the lipids and proteins in the bilayer was monitored by fluorescence recovery after photobleaching. Uniform bilayers with high lateral lipid diffusion coefficients (0.8-1.2 x 10(-8) cm(2)/s) were observed when the polymer concentration was kept slightly below the mushroom-to-brush transition. Cytochrome b(5) and annexin V were used as first test proteins in this system. When reconstituted in supported bilayers that were directly supported on quartz, both proteins were largely immobile with mobile fractions < 25%. However, two populations of laterally mobile proteins were observed in the polymer-supported bilayers. Approximately 25% of cytochrome b(5) diffused with a diffusion coefficient of approximately 1 x 10(-8) cm(2)/s, and 50-60% diffused with a diffusion coefficient of approximately 2 x 10(-10) cm(2)/s. Similarly, one-third of annexin V diffused with a diffusion coefficient of approximately 3 x 10(-9) cm(2)/s, and two-thirds diffused with a diffusion coefficient of approximately 4 x 10(-10) cm(2)/s. A model for the interaction of these proteins with the underlying polymer is discussed.


Nature Structural & Molecular Biology | 2001

Structure of outer membrane protein A transmembrane domain by NMR spectroscopy

Ashish Arora; Frits Abildgaard; John H. Bushweller; Lukas K. Tamm

We have determined the three-dimensional fold of the 19 kDa (177 residues) transmembrane domain of the outer membrane protein A of Escherichia coli in dodecylphosphocholine (DPC) micelles in solution using heteronuclear NMR. The structure consists of an eight-stranded β-barrel connected by tight turns on the periplasmic side and larger mobile loops on the extracellular side. The solution structure of the barrel in DPC micelles is similar to that in n-octyltetraoxyethylene (C8E4) micelles determined by X-ray diffraction. Moreover, data from NMR dynamic experiments reveal a gradient of conformational flexibility in the structure that may contribute to the membrane channel function of this protein.


Biophysical Journal | 2004

Role of Cholesterol in the Formation and Nature of Lipid Rafts in Planar and Spherical Model Membranes

Jonathan M. Crane; Lukas K. Tamm

Sterols play a crucial regulatory and structural role in the lateral organization of eukaryotic cell membranes. Cholesterol has been connected to the possible formation of ordered lipid domains (rafts) in mammalian cell membranes. Lipid rafts are composed of lipids in the liquid-ordered (l(o)) phase and are surrounded with lipids in the liquid-disordered (l(d)) phase. Cholesterol and sphingomyelin are thought to be the principal components of lipid rafts in cell and model membranes. We have used fluorescence microscopy and fluorescence recovery after photobleaching in planar supported lipid bilayers composed of porcine brain phosphatidylcholine (bPC), porcine brain sphingomyelin (bSM), and cholesterol to map the composition-dependence of l(d)/l(o) phase coexistence. Cholesterol decreases the fluidity of bPC bilayers, but disrupts the highly ordered gel phase of bSM, leading to a more fluid membrane. When mixed with bPC/bSM (1:1) or bPC/bSM (2:1), cholesterol induces the formation of l(o) phase domains. The fraction of the membrane in the l(o) phase was found to be directly proportional to the cholesterol concentration in both phospholipid mixtures, which implies that a significant fraction of bPC cosegregates into l(o) phase domains. Images reveal a percolation threshold, i.e., the point where rafts become connected and fluid domains disconnected, when 45-50% of the total membrane is converted to the l(o) phase. This happens between 20 and 25 mol % cholesterol in 1:1 bPC/bSM bilayers and between 25 and 30 mol % cholesterol in 2:1 bPC/bSM bilayers at room temperature, and at approximately 35 mol % cholesterol in 1:1 bPC/bSM bilayers at 37 degrees C. Area fractions of l(o) phase lipids obtained in multilamellar liposomes by a fluorescence resonance energy transfer method confirm and support the results obtained in planar lipid bilayers.


Proceedings of the National Academy of Sciences of the United States of America | 2004

Elastic coupling of integral membrane protein stability to lipid bilayer forces

Heedeok Hong; Lukas K. Tamm

It has been traditionally difficult to measure the thermodynamic stability of membrane proteins because fully reversible protocols for complete folding these proteins were not available. Knowledge of the thermodynamic stability of membrane proteins is desirable not only from a fundamental theoretical standpoint, but is also of enormous practical interest for the rational design of membrane proteins and for optimizing conditions for their structure determination by crystallography or NMR. Here, we describe the design of a fully reversible system to study equilibrium folding of the outer membrane protein A from Escherichia coli in lipid bilayers. Folding is shown to be two-state under appropriate conditions permitting data analysis with a classical folding model developed for soluble proteins. The resulting free energy and m value, i.e., a measure of cooperativity, of unfolding are \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\Delta}G_{u,{\mathrm{H}}_{2}{\mathrm{O}}}^{{\mathrm{o}}}=3.4~{\mathrm{kcal/mol}}\end{equation*}\end{document} and m = 1.1 kcal/mol M–1, respectively, in a reference bilayer composed of palmitoyl-oleoyl-phosphatidylcholine (C16:0C18:1PC) and palmitoyloleoyl-phosphatidylglycerol (C16:0C18:1PG). These values are strong functions of the lipid bilayer environment. By systematic variation of lipid headgroup and chain composition, we show that elastic bilayer forces such as curvature stress and hydrophobic mismatch modulate the free energy and cooperativity of folding of this and perhaps many other membrane proteins.


Journal of Biological Chemistry | 2006

The outer membrane protein OmpW forms an eight-stranded beta-barrel with a hydrophobic channel.

Heedeok Hong; Dimki R. Patel; Lukas K. Tamm; Bert van den Berg

Escherichia coli OmpW belongs to a family of small outer membrane proteins that are widespread in Gram-negative bacteria. Their functions are unknown, but recent data suggest that they may be involved in the protection of bacteria against various forms of environmental stress. To gain insight into the function of these proteins Å we have determined the crystal structure of E. coli OmpW to 2.7-A resolution. The structure shows that OmpW forms an 8-stranded β-barrel with a long and narrow hydrophobic channel that contains a bound n-dodecyl-N,N-dimethylamine-N-oxide detergent molecule. Single channel conductance experiments show that OmpW functions as an ion channel in planar lipid bilayers. The channel activity can be blocked by the addition of n-dodecyl-N,N-dimethylamine-N-oxide. Taken together, the data suggest that members of the OmpW family could be involved in the transport of small hydrophobic molecules across the bacterial outer membrane.


Journal of Biological Chemistry | 2000

Refolded Outer Membrane Protein A of Escherichia coliForms Ion Channels with Two Conductance States in Planar Lipid Bilayers

Ashish Arora; Dennis Rinehart; Gabor Szabo; Lukas K. Tamm

Outer membrane protein A (OmpA), a major structural protein of the outer membrane of Escherichia coli, consists of an N-terminal 8-stranded β-barrel transmembrane domain and a C-terminal periplasmic domain. OmpA has served as an excellent model for studying the mechanism of insertion, folding, and assembly of constitutive integral membrane proteinsin vivo and in vitro. The function of OmpA is currently not well understood. Particularly, the question whether or not OmpA forms an ion channel and/or nonspecific pore for uncharged larger solutes, as some other porins do, has been controversial. We have incorporated detergent-purified OmpA into planar lipid bilayers and studied its permeability to ions by single channel conductance measurements. In 1 m KCl, OmpA formed small (50–80 pS) and large (260–320 pS) channels. These two conductance states were interconvertible, presumably corresponding to two different conformations of OmpA in the membrane. The smaller channels are associated with the N-terminal transmembrane domain, whereas both domains are required to form the larger channels. The two channel activities provide a new functional assay for the refolding in vitro of the two respective domains of OmpA. Wild-type and five single tryptophan mutants of urea-denatured OmpA are shown to refold into functional channels in lipid bilayers.


Biochimica et Biophysica Acta | 2009

Domain coupling in asymmetric lipid bilayers

Volker Kiessling; Chen Wan; Lukas K. Tamm

Biological membranes are heterogeneous assemblies of lipids, proteins, and cholesterol that are organized as asymmetric bimolecular leaflets of lipids with embedded proteins. Modulated by the concentration of cholesterol lipids and proteins may segregate into two or more liquid phases with different physical properties that can coexist in the same membrane. In this review, we summarize recent advances on how this situation can be recreated in a supported bilayer format and how this system has been used to demonstrate the induction of ordered lipid domains in lipid compositions that are typical for the inner leaflet by lipid compositions that are typical for the outer leaflet of mammalian plasma membranes. Proteins are shown to differentially target such induced inner leaflet domains.

Collaboration


Dive into the Lukas K. Tamm's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alex L. Lai

University of Virginia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge